日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過B、D兩點(diǎn),且分別交AB,BC于點(diǎn)E,F(xiàn).

          (1)求證:AC是⊙O的切線;
          (2)已知AB=5,AC=4,求⊙O的半徑r.

          【答案】
          (1)證明:連接OD,如圖,

          ∵OB=OD,

          ∴∠ODB=∠OBD,

          ∵∠ABC的平分線交AC于點(diǎn)D,

          ∴∠OBD=∠DBC,

          ∴∠ODB=∠DBC,

          ∴OD∥BC,

          ∵∠C=90°,

          ∴∠ADO=90°,

          ∴OD⊥AC,

          ∴AC是⊙O的切線


          (2)解:在Rt△ABC中,∵∠C=90°,AB=5,AC=4,

          ∴BC= =3,

          ∵OD∥BC,

          ∴△AOD∽△ABC,

          = ,即 = ,

          解得r=


          【解析】要證AC是⊙O的切線,可知點(diǎn)D在圓上,因此連半徑OD,再證明OD⊥AC即可,只需證出OD∥BC,再根據(jù)已知∠C=90°,即可得結(jié)論。
          (2)在Rt△ABC中,利用勾股定理即可求出BC的長,再證明△AOD∽△ABC,運(yùn)用相似三角形的性質(zhì),得對應(yīng)邊成比例,建立關(guān)于r的方程,求解即可。
          【考點(diǎn)精析】本題主要考查了勾股定理的概念和切線的判定定理的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:

          1)小明家到學(xué)校的路程是 米.

          2)小明在書店停留了 分鐘.

          3)本次上學(xué)途中,小明一共行駛了 米.一共用了 分鐘.

          4)我們認(rèn)為騎單車的速度超過 300 /分就超過了安全限度.問:在整個(gè)上學(xué)途中哪個(gè)時(shí)間段小明的騎車速度最快,最快速度為多少,在安全限度內(nèi)嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們知道:任意一個(gè)有理數(shù)與無理數(shù)的和為無理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.

          運(yùn)用上述知識,解決下列問題:

          (1)如果a-2+b+3=0,其中a、b為有理數(shù),那么a= ,b=

          (2)如果2+a-1-b=5,其中a、b為有理數(shù),求a+2b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】今年植樹節(jié),東方紅中學(xué)組織師生開展植樹造林活動(dòng),為了了解全校800名學(xué)生的植樹情況,隨機(jī)抽樣調(diào)查50名學(xué)生的植樹情況,制成如下統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖(均不完整).

          1)將統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖補(bǔ)充完整;

          2)求抽樣的50名學(xué)生植樹數(shù)量的平均數(shù);

          3)根據(jù)抽樣數(shù)據(jù),估計(jì)該校800名學(xué)生的植樹數(shù)量.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B(a,0),點(diǎn)C(0b)分別在x軸,y軸上,其中a,b是二元一次方程的解,且a為不等式的最大整數(shù)解.

          1)證明:OB=OC

          2)如圖1,連接AB,過點(diǎn)AADABy軸于點(diǎn)D,在射線AD上截取AE=AB,連接CE,取CE的中點(diǎn)F,連接AF并延長至點(diǎn)G,使FG=AF,連接CG,OA.當(dāng)點(diǎn)A在第一象限內(nèi)運(yùn)動(dòng)(AD不經(jīng)過點(diǎn)C)時(shí),證明:∠OAF的大小不變;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
          (1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;


          (2)在圖②中,若AP1=2,則CQ等于多少?
          (3)如圖③,在B1C上取一點(diǎn)E,連接BE、P1E,設(shè)BC=1,當(dāng)BE⊥P1B時(shí),求△P1BE面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE,BE,DE,過點(diǎn)AAE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為EBED;SAPD+SAPB=1+.其中正確結(jié)論的序號是(  )

          A. ①②③ B. ①②④ C. ②③④ D. ①③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知∠ABC=63°,∠ECB=117°.

          (1) ABED平行嗎?為什么?

          (2)若∠P=Q,則∠1與∠2是否相等?說說你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】有一組平行線過點(diǎn)AAM于點(diǎn)M,作∠MAN=60°,AN=AM,過點(diǎn)NCNAN交直線于點(diǎn)C,在直線上取點(diǎn)B使BM=CN,若直線間的距離為2,間的距離為4,BC=______.

          查看答案和解析>>

          同步練習(xí)冊答案