日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,動點P從B點出發(fā),沿線段BC向點C作勻速運動;動點Q從點D出發(fā),沿線段DA向點A作勻速運動.過Q點垂直于AD的射線交AC于點M,交BC于點N.P、Q兩點同時出發(fā),速度???為每秒1個單位長度.當(dāng)Q點運動到A點,P、Q兩點同時停止運動.設(shè)點Q運動的時間為t秒.
          (1)求NC,MC的長(用t的代數(shù)式表示);
          (2)當(dāng)t為何值時,四邊形PCDQ構(gòu)成平行四邊形;
          (3)是否存在某一時刻,使射線QN恰好將△ABC的面積和周長同時平分?若存在,求出此時t的值;若不存在,請說明理由;
          (4)探究:t為何值時,△PMC為等腰三角形.
          分析:(1)依據(jù)題意易知四邊形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,CB、CN已知,根據(jù)勾股定理可求CA=5,即可表示CM;
          (2)四邊形PCDQ構(gòu)成平行四邊形就是PC=DQ,列方程4-t=t即解;
          (3)可先根據(jù)QN平分△ABC的周長,得出MC+NC=AM+BN+AB,據(jù)此來求出t的值.然后根據(jù)得出的t的值,求出△MNC的面積,即可判斷出△MNC的面積是否為△ABC面積的一半,由此可得出是否存在符合條件的t值.
          (4)由于等腰三角形的兩腰不確定,因此分三種情況進行討論:
          ①當(dāng)MP=MC時,那么PC=2NC,據(jù)此可求出t的值.
          ②當(dāng)CM=CP時,可根據(jù)CM和CP的表達(dá)式以及題設(shè)的等量關(guān)系來求出t的值.
          ③當(dāng)MP=PC時,在直角三角形MNP中,先用t表示出三邊的長,然后根據(jù)勾股定理即可得出t的值.
          綜上所述可得出符合條件的t的值.
          解答:解:(1)∵AQ=3-t,
          ∴CN=4-(3-t)=1+t.
          在Rt△ABC中,AC2=AB2+BC2=32+42,
          ∴AC=5.
          在Rt△MNC中,cos∠NCM=
          NC
          MC
          =
          4
          5
          ,CM=
          5+5t
          4
          ;

          (2)由于四邊形PCDQ構(gòu)成平行四邊形,
          ∴PC=QD,即4-t=t,
          解得t=2.

          (3)如果射線QN將△ABC的周長平分,則有:
          MC+NC=AM+BN+AB,
          即:
          5
          4
          (1+t)+1+t=
          1
          2
          (3+4+5),
          解得:t=
          5
          3
          .(5分)
          而MN=
          3
          4
          NC=
          3
          4
          (1+t),
          ∴S△MNC=
          1
          2
          ×
          3
          4
          (1+t)2=
          3
          8
          (1+t)2
          當(dāng)t=
          5
          3
          時,S△MNC=
          3
          8
          (1+t)2=
          8
          3
          1
          2
          ×
          1
          2
          ×4×3.
          ∴不存在某一時刻t,使射線QN恰好將△ABC的面積和周長同時平分;

          (4)①當(dāng)MP=MC時;則有:NP=NC,
          即PC=2NC∴4-t=2(1+t),
          解得:t=
          2
          3
          ;
          ②當(dāng)CM=CP時;則有:
          5
          4
          (1+t)=4-t,
          解得:t=
          11
          9
          ;
          精英家教網(wǎng)③當(dāng)PM=PC時;則有:在Rt△MNP中,PM2=MN2+PN2,
          而MN=
          3
          4
          NC=
          3
          4
          (1+t),
          PN=|PC-NC|=|(4-t)-(1+t)|=|3-2t|,
          ∴[
          3
          4
          (1+t)]2+(3-2t)2=(4-t)2,
          解得:t1=
          103
          57
          ,t2=-1(舍去)
          ∴當(dāng)t=
          2
          3
          ,t=
          11
          9
          ,t=
          103
          57
          時,△PMC為等腰三角形.
          點評:此題繁雜,難度中等,考查平行四邊形性質(zhì)及等腰三角形性質(zhì).考查學(xué)生分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點E是AB邊上一點,AE=BC,DE⊥EC,取DC的中點F,連接AF、BF.
          (1)求證:AD=BE;
          (2)試判斷△ABF的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
          (1)求證:EB=EF;
          (2)延長FE交BC于點G,點G恰好是BC的中點,若AB=6,求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
          (1)求證:BC=CD;
          (2)在邊AB上找點E,連接CE,將△BCE繞點C順時針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
          (1)求證:EB=EF;
          (2)若EF=6,求梯形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點,AD=3cm,BC=5cm.求⊙O的面積.

          查看答案和解析>>

          同步練習(xí)冊答案