日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•蓮都區(qū)模擬)如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知OA:OB=1:5,OB=OC,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
          (1)求此拋物線的函數(shù)表達式;
          (2)點P(2,-3)是拋物線對稱軸上的一點,在線段OC上有一動點M,以每秒2個單位的速度從O向C運動,(不與點O,C重合),過點M作MH∥BC,交X軸于點H,設(shè)點M的運動時間為t秒,試把△PMH的面積S表示成t的函數(shù),當t為何值時,S有最大值,并求出最大值;
          (3)設(shè)點E是拋物線上異于點A,B的一個動點,過點E作x軸的平行線交拋物線于另一點F.以EF為直徑畫⊙Q,則在點E的運動過程中,是否存在與x軸相切的⊙Q?若存在,求出此時點E的坐標;若不存在,請說明理由.
          分析:(1)由已知設(shè)OA=m,則OB=OC=5m,AB=6m,由S△ABC=
          1
          2
          AB×OC=15,可求m的值,確定A、B、C三點坐標,由A、B兩點坐標設(shè)拋物線交點式,將C點坐標代入求解即可;
          (2)先根據(jù)點B、C的坐標求出直線BC的解析式,在設(shè)出點M的坐標,從而求出MH的解析式,根據(jù)拋物線的對稱軸x=2得到直線MH與對稱軸的交點D的坐標,求出DP的長度,然后根據(jù)S△PMH=
          S△PMD+S△PDH,列式得到關(guān)于t的二次函數(shù),最后根據(jù)二次函數(shù)的最值問題解答即可;
          (3)存在.根據(jù)拋物線的解析式設(shè)出點E的坐標,然后根據(jù)二次函數(shù)的對稱性求出點E到對稱軸的距離,再根據(jù)以EF為直徑的⊙Q與x軸相切,則點E到x軸的距離等于點E到對稱軸的距離相等,然后列出方程,再根據(jù)絕對值的性質(zhì)去掉括號解方程即可,從而得到點E的坐標.
          解答:解:(1)∵|OA|:|OB|=1:5,|OB|=|OC|,
          設(shè)OA=m,則OB=OC=5m,AB=6m,
          由S△ABC=
          1
          2
          AB×OC=15,得
          1
          2
          ×6m×5m=15,
          解得m=1(舍去負值),
          ∴A(-1,0),B(5,0),C(0,-5),
          設(shè)拋物線解析式為y=a(x+1)(x-5),將C點坐標代入,得a=1,
          ∴拋物線解析式為y=(x+1)(x-5),
          即y=x2-4x-5;

          (2)∵B(5,0),C(0,-5),
          ∴直線BC的解析式為:y=x-5,
          ∵點M的運動時間為t,
          ∴M(0,-2t),
          ∵直線MH平行于直線BC,
          ∴直線MH為y=x-2t,
          設(shè)直線MH與對稱軸交于點D,點D的坐標為(2,2-2t),
          ∴DP=(2-2t)-(-3)=5-2t,
          ∴S△PMH=
          1
          2
          ×2t(5-2t)=-2t2+5t=-2(t-
          5
          4
          2+
          25
          8
          ,(0<t<
          5
          2
          ),
          ∴當t=
          5
          4
          時,S有最大值是
          25
          8
          ;

          (3)∵拋物線的解析式為y=x2-4x-5,
          ∴設(shè)點E的坐標為(x,x2-4x-5),
          又∵拋物線的對稱軸為x=2,
          ∴點E到對稱軸的距離為
          1
          2
          EF=|x-2|,
          ∵以EF為直徑的⊙Q與x軸相切,
          ∴|x-2|=|x2-4x-5|,
          ①x-2>0,x2-4x-5>0時,即x>5時,x-2=x2-4x-5,
          整理得,x2-5x-3=0,
          解得x=
          5+
          37
          2
          ,x=
          5-
          37
          2
          (舍去),
          ∴x-2=
          1+
          37
          2
          ,
          此時點E的坐標為(
          5+
          37
          2
          ,
          1+
          37
          2
          ),
          ②x-2>0,x2-4x-5<0時,即2<x<5時,x-2=-(x2-4x-5),
          整理得,x2-3x-7=0,
          解得x=
          3+
          37
          2
          ,x=
          3-
          37
          2
          (舍去),
          ∴-(x-2)=-(
          3+
          37
          2
          -2)=
          1-
          37
          2
          ,
          此時點E的坐標為(
          3+
          37
          2
          ,
          1-
          37
          2
          ),
          ③x-2<0,x2-4x-5>0時,即x<-1時,-(x-2)=x2-4x-5,
          整理得,x2-3x-7=0,
          解得x=
          3-
          37
          2
          ,x=
          3+
          37
          2
          (舍去),
          ∴-(x-2)=-(
          3-
          37
          2
          -2)=
          1+
          37
          2
          ,
          此時點E的坐標為(
          3-
          37
          2
          1+
          37
          2
          ),
          ④x-2<0,x2-4x-5<0時,即-1<x<2時,-(x-2)=-(x2-4x-5),
          整理得,x2-5x-3=0,
          解得x=
          5-
          37
          2
          ,x=
          5+
          37
          2
          (舍去),
          ∴x-2=
          5-
          37
          2
          -2=
          1-
          37
          2

          此時點E的坐標為(
          5-
          37
          2
          ,
          1-
          37
          2
          ),
          綜上所述,存在點E:(
          5+
          37
          2
          1+
          37
          2
          ),(
          3+
          37
          2
          ,
          1-
          37
          2
          ),(
          3-
          37
          2
          ,
          1+
          37
          2
          ),(
          5-
          37
          2
          ,
          1-
          37
          2
          )使得以EF為直徑的⊙Q與x軸相切.
          點評:本題考查了二次函數(shù)的綜合運用,待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的最值問題,三角形的面積,以及二次函數(shù)的對稱性,(3)中要注意點到直線的距離的表示以及絕對值方程的討論求解,難度不大,但運算比較麻煩,計算時要認真仔細.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          (2012•蓮都區(qū)模擬)將拋物線y=-2x2-1向上平移若干個單位,使拋物線與坐標軸有三個交點,如果這些交點能構(gòu)成直角三角形,那么平移的距離為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•蓮都區(qū)模擬)如圖,在Rt△ABC中,AB=CB,BO⊥AC于點O,把△ABC折疊,使AB落在AC上,點B與AC上的點E重合,展開后,折痕AD交BO于點F,連接DE、EF.下列結(jié)論:①tan∠ADB=2;②圖中有4對全等三角形;③若將△DEF沿EF折疊,則點D不一定落在AC上;④BD=BF;⑤S四邊形DFOE=S△AOF,上述結(jié)論中錯誤的個數(shù)是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•蓮都區(qū)模擬)一元二次方程x(2x+3)=0的解為
          x1=0,x2=-
          3
          2
          x1=0,x2=-
          3
          2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•蓮都區(qū)模擬)計算:(
          12
          )-2+tan45°-|-3|

          查看答案和解析>>

          同步練習冊答案