日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在扇形OMN中,∠MON90°,OM6,△ABC是扇形的內(nèi)接三角形,其中AC、B分別在半徑OM、ON和弧MN上,∠ACB90°,BCAC38,則線段BC的最小值為_____

          【答案】2

          【解析】

          如圖,取AC的中點(diǎn)M,連接BM,OM,BO,根據(jù)BCAC38設(shè)BC3k,AC8k,則CMAM4k,利用勾股定理進(jìn)一步求解得出BM的長,然后利用BM+OMOB進(jìn)一步求解即可.

          如圖,取AC的中點(diǎn)M,連接BM,OMBO,

          BCAC38,

          ∴可以假設(shè)BC3kAC8k,則CMAM4k,

          ∵∠ACB=∠COA90°

          BM5k,OMAC4k,

          BM+OMOB,

          5k+4k≥6,

          k,

          k的最小值為

          BC的最小值為2,

          故答案為2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是⊙的直徑,,點(diǎn)、在⊙上,的延長線交于點(diǎn),且,,有以下結(jié)論:①;②劣弧的長為;③點(diǎn)的中點(diǎn);④平分,以上結(jié)論一定正確的是______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)與反比例函數(shù)的圖象相交于兩點(diǎn),過點(diǎn)軸于點(diǎn),,,點(diǎn)的坐標(biāo)為

          1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

          2)求的面積;

          3軸上一點(diǎn),且是等腰三角形,請直接寫出所有符合條件的點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,均為等腰三角形,且,連接,兩條線段所在的直線交于點(diǎn).

          1)線段有何數(shù)量關(guān)系和位置關(guān)系,請說明理由.

          2)若已知,繞點(diǎn)順時針旋轉(zhuǎn),

          如圖2,當(dāng)點(diǎn)恰好落在的延長線上時,求的長;

          在旋轉(zhuǎn)一周的過程中,設(shè)的面積為,求的最值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,反比例函數(shù)y1的圖象與一次函數(shù)y2ax+b的圖象交于點(diǎn)A1,4)和點(diǎn)Bm,﹣2).

          1)求AOB的面積;

          2)結(jié)合圖象直接寫出y1y2x的取值范圍   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CEAB于點(diǎn)F,且BF=BC

          1)求證:BC是⊙O的切線;

          2)若⊙O的半徑為2,=,求CE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個條件,這個條件不可以是( 。

          A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,拋物線yax2+bx+c的頂點(diǎn)(05),且過點(diǎn)(﹣3,),先求拋物線的解析式,再解決下列問題:

          (應(yīng)用)問題1,如圖2,線段ABd(定值),將其彎折成互相垂直的兩段AC、CB后,設(shè)A、B兩點(diǎn)的距離為x,由A、B、C三點(diǎn)組成圖形面積為S,且Sx的函數(shù)關(guān)系如圖所示(拋物線yax2+bx+cMN之間的部分,Mx軸上):

          1)填空:線段AB的長度d   ;彎折后A、B兩點(diǎn)的距離x的取值范圍是   ;若S3,則是否存在點(diǎn)C,將AB分成兩段(填不能   ;若面積S1.5時,點(diǎn)C將線段AB分成兩段的長分別是   

          2)填空:在如圖1中,以原點(diǎn)O為圓心,A、B兩點(diǎn)的距離x為半徑的⊙O;畫出點(diǎn)CAB所得兩段ACCB的函數(shù)圖象(線段);設(shè)圓心O到該函數(shù)圖象的距離為h,則h   ,該函數(shù)圖象與⊙O的位置關(guān)系是   

          (提升)問題2,一個直角三角形斜邊長為c(定值),設(shè)其面積為S,周長為x,證明Sx的二次函數(shù),求該函數(shù)關(guān)系式,并求x的取值范圍和相應(yīng)S的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).

          (1)作出ABC關(guān)于y軸對稱的,并寫出的坐標(biāo);

          (2)作出ABC繞點(diǎn)O逆時針旋轉(zhuǎn)90°后得到的,并求出所經(jīng)過的路徑長.

          查看答案和解析>>

          同步練習(xí)冊答案