日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•蘭州一模)如圖,AB是⊙O的弦,點(diǎn)D是半徑OA上的動(dòng)點(diǎn)(與點(diǎn)A,O不重合),過點(diǎn)D垂直于OA的直線交⊙O于點(diǎn)E,F(xiàn),交AB于點(diǎn)C.
          (1)點(diǎn)H在直線EF上,如果HC=HB,那么HB是⊙O的切線嗎?
          (2)連接AE,AF,如果
          AF
          =
          FB
          ,求證:AF2=CF•FE
          (3)在(2)的條件下,已知CF=8,F(xiàn)E=25,若點(diǎn)D是半徑OA的中點(diǎn),求⊙O的面積.
          分析:(1)HB為圓O的切線,理由為:連接OB,由HC=HB,利用等邊對(duì)等角得到一對(duì)角相等,再由對(duì)頂角相等,等量代換得到∠HBC=∠ACD,由OA=OB,利用等邊對(duì)等角得到一對(duì)角相等,再由CD垂直于OA,得到一對(duì)角互余,等量代換得到OB垂直于BH,即可得證;
          (2)連接AE,AF,由等弧所對(duì)的圓周角相等得到一對(duì)角相等,再由一對(duì)公共角,得到三角形ACF與三角形AEF相似,由相似得比例,變形即可得證;
          (3)由(2)結(jié)論,將FC與EF代入求出AF,由OA垂直于EF,利用垂徑定理得到D為EF中點(diǎn),求出FD的長,由AD為半徑一半,在直角三角形AFD中,利用勾股定理求出半徑r,即可求出圓的面積.
          解答:(1)HB為圓O的切線,理由為:
          證明:連接OB,
          ∵HC=HB,
          ∴∠HBC=∠HCB,
          ∵∠HCB=∠ACD,
          ∴∠HBC=∠ACD,
          ∵OA=OB,
          ∴∠A=∠OBA,
          ∵CD⊥OA,
          ∴∠ACD+∠A=90°,
          ∴∠HBC+∠OBA=90°,即∠OBH=90°,
          ∴HB為圓O的切線;

          (2)證明:∵
          AF
          =
          FB
          ,
          ∴∠FAB=∠E,
          ∵∠AFC=∠EFA,
          ∴△ACF∽△EAF,
          AF
          EF
          =
          FC
          AF
          ,即AF2=FC•EF;

          (3)解:由(2)的結(jié)論得:AF2=FC•EF=8×25=200,
          解得:AF=10
          2
          ,
          ∵OA⊥EF,∴D為EF的中點(diǎn),
          ∴FD=ED=
          1
          2
          EF=
          25
          2
          ,
          ∵D為半徑r的中點(diǎn),
          ∴AD=
          1
          2
          r,
          在Rt△AFD中,根據(jù)勾股定理得:AF2=AD2+FD2
          即200=
          1
          4
          r2+
          625
          4
          ,
          解得:r=5
          7
          ,
          則圓O的面積為175π.
          點(diǎn)評(píng):此題考查了切線的判定,圓周角定理,垂徑定理,勾股定理,相似三角形的判定與性質(zhì),熟練掌握切線的判定方法是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•蘭州一模)實(shí)數(shù)a,b在數(shù)軸上的位置如圖所示,則關(guān)于x的一元二次方程ax2+bx+1=0( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•蘭州一模)如圖,菱形OABC的頂點(diǎn)B在y軸上,頂點(diǎn)C的坐標(biāo)為(-3,2),若反比例函數(shù)y=
          k
          x
          (x>0)的圖象經(jīng)過點(diǎn)A,則反比例函數(shù)的表達(dá)式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•蘭州一模)已知x2-mx+4是一個(gè)關(guān)于x的完全平方式,且反比例函數(shù)y=
          m+1
          x
          的圖象在每個(gè)象限內(nèi)y隨x的增大而增大,那么m的值為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•蘭州一模)若(a-bcos60°)2+|b-2tan45°|=0,則(a-b)2013的值是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•蘭州一模)若反比例函數(shù)y=
          kx
          的圖象經(jīng)過點(diǎn)(2,-5),則k的值為
          -10
          -10

          查看答案和解析>>

          同步練習(xí)冊(cè)答案