日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】△ABC是等邊三角形,點(diǎn)D、E分別在邊AB、BC上,CD、AE交于點(diǎn)F,∠AFD=60°.
          (1)如圖1,求證:BD=CE;
          (2)如圖2,F(xiàn)G為△AFC的角平分線,點(diǎn)H在FG的延長(zhǎng)線上,HG=CD,連接HA、HC,求證:∠AHC=60°;
          (3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長(zhǎng).

          【答案】
          (1)解:如圖1,

          ∵△ABC是等邊三角形,

          ∴∠B=∠ACE=60°BC=AC,

          ∵∠AFD=∠CAE+∠ACD=60°∠BCD+∠ACD=∠ACB=60°,

          ∴∠BCD=∠CAE,

          在△ABE和△BCD中,

          ∴△ABE≌△BCD(ASA),

          ∴BD=CE;


          (2)解:如圖2,作CM⊥AE交AE的延長(zhǎng)線于M,作CN⊥HF于N,

          ∵∠EFC=∠AFD=60°

          ∴∠AFC=120°,

          ∵FG為△AFC的角平分線,

          ∴∠CFH=∠AFH=60°,

          ∴∠CFH=∠CFE=60°,

          ∵CM⊥AE,CN⊥HF,

          ∴CM=CN,

          ∵∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,

          ∴∠CEM=∠CGN,

          在△ECM和△GCN中

          ∴△ECM≌△GCN(AAS),

          ∴CE=CG,EM=GN,∠ECM=∠GCN,

          ∴∠MCN=∠ECG=60°,

          ∵△ABE≌△BCD,

          ∵AE=CD,

          ∵HG=CD,

          ∴AE=HG,

          ∴AE+EM=HG+GN,即AM=HN,

          在△AMC和△HNC中

          ∴△AMC≌△HNC(SAS),

          ∴∠ACM=∠HCN,AC=HC,

          ∴∠ACM﹣∠ECM=∠HCN﹣∠GCN,即∠ACE=∠HCG=60°,

          ∴△ACH是等邊三角形,

          ∴∠AHC=60°;


          (3)解:如圖3,在FH上截取FK=FC,

          ∵∠HFC=60°,

          ∴△FCK是等邊三角形,

          ∴∠FKC=60°,F(xiàn)C=KC=FK,

          ∵∠ACH=60°,

          ∴∠ACF=∠HCK,

          在△AFC和△HKC中

          ∴△AFC≌△HKC(SAS),

          ∴AF=HK,

          ∴HF=AF+FC=9,

          ∵AD=2BD,BD=CE=CG,AB=AC,

          ∴AG=2CG,

          = = ,

          作GW⊥AE于W,GQ⊥DC于Q,

          ∵FG為△AFC的角平分線,

          ∴GW=GQ,

          = = =

          ∴AF=2CF,

          ∴AF=6.


          【解析】(1)根據(jù)等邊三角形的性質(zhì)得出AB=BC,∠BAC=∠C=∠ABE=60°,根據(jù)SAS推出△ABE≌△BCD,即可證得結(jié)論;(2)根據(jù)角平分線的性質(zhì)定理證得CM=CN,利用∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,得出∠CEM=∠CGN,然后根據(jù)AAS證得△ECM≌△GCN,得出CG=CE,EM=GN,∠ECM=∠GCN,進(jìn)而證得△AMC≌△HNC,得出∠ACM=∠HCN,AC=HC,從而證得△ACH是等邊三角形,證得∠AHC=60°;(3)在FH上截取FK=FC,得出△FCK是等邊三角形,進(jìn)一步得出FC=KC=FK,∠ACF=∠HCK,證得△AFC≌△HKC得出AF=HK,從而得到HF=AF+FC=9,由AD=2BD可知AG=2CG,再由 = ,根據(jù)等高三角形面積比等于底的比得出 = = =2,再由AF+FC=9求得.
          【考點(diǎn)精析】關(guān)于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某天早晨,王老師從家出發(fā),騎摩托車(chē)前往學(xué)校,途中在路旁一家飯店吃早餐,如圖所示的是王老師從家到學(xué)校這一過(guò)程中行駛路程s(千米)與時(shí)間t(分)之間的關(guān)系.
          (1)學(xué)校離他家多遠(yuǎn)?從出發(fā)到學(xué)校,用了多少時(shí)間?
          (2)王老師吃早餐用了多少時(shí)間?
          (3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?最快時(shí)速達(dá)到多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,頂點(diǎn)為M的拋物線分別與x軸相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸相交于點(diǎn)C(0,﹣3).

          (1)求拋物線的函數(shù)表達(dá)式;

          (2)判斷BCM是否為直角三角形,并說(shuō)明理由.

          (3)拋物線上是否存在點(diǎn)N(點(diǎn)N與點(diǎn)M不重合),使得以點(diǎn)A,B,C,N為頂點(diǎn)的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸的交點(diǎn)分別為A、B,將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線AB上,折痕交x軸于點(diǎn)C.

          (1)直接寫(xiě)出點(diǎn)C的坐標(biāo),并求過(guò)A、B、C三點(diǎn)的拋物線的解析式;

          (2)若拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

          (3)設(shè)拋物線的對(duì)稱(chēng)軸與直線BC的交點(diǎn)為T(mén),Q為線段BT上一點(diǎn),直接寫(xiě)出|QA﹣QO|的取值范圍

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上.

          (1)請(qǐng)直接寫(xiě)出線段BE與線段CD的關(guān)系: ;

          (2)如圖2,將圖1中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0<α<360°),

          ①(1)中的結(jié)論是否成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說(shuō)明理由;

          ②當(dāng)AC=ED時(shí),探究在△ABC旋轉(zhuǎn)的過(guò)程中,是否存在這樣的角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出角α的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算下列各題:
          (1)2(m+1)2﹣(2m+1)(2m﹣1);
          (2)4x2﹣(﹣2x+3)(﹣2x﹣3);
          (3)先化簡(jiǎn),再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1所示,已知拋物線的頂點(diǎn)為D,與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),E為對(duì)稱(chēng)軸上的一點(diǎn),連接CE,將線段CE繞點(diǎn)E按逆時(shí)針?lè)较蛐D(zhuǎn)90°后,點(diǎn)C的對(duì)應(yīng)點(diǎn)C′恰好落在y軸上.

          (1)直接寫(xiě)出D點(diǎn)和E點(diǎn)的坐標(biāo);

          (2)點(diǎn)F為直線C′E與已知拋物線的一個(gè)交點(diǎn),點(diǎn)H是拋物線上C與F之間的一個(gè)動(dòng)點(diǎn),若過(guò)點(diǎn)H作直線HG與y軸平行,且與直線C′E交于點(diǎn)G,設(shè)點(diǎn)H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時(shí),=5:6?

          (3)圖2所示的拋物線是由向右平移1個(gè)單位后得到的,點(diǎn)T(5,y)在拋物線上,點(diǎn)P是拋物線上O與T之間的任意一點(diǎn),在線段OT上是否存在一點(diǎn)Q,使△PQT是等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,拋物線交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線段OB上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,過(guò)點(diǎn)E作直線l⊥x軸于H,過(guò)點(diǎn)C作CF⊥l于F.

          (1)求拋物線解析式;

          (2)如圖2,當(dāng)點(diǎn)F恰好在拋物線上時(shí),求線段OD的長(zhǎng);

          (3)在(2)的條件下:

          ①連接DF,求tan∠FDE的值;

          ②試探究在直線l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】老師在黑板上書(shū)寫(xiě)了一個(gè)正確的演算過(guò)程,隨后用一張紙擋住了一個(gè)二次三項(xiàng)式,形式如下: ﹣3x=x2﹣5x+1
          (1)求所擋的二次三項(xiàng)式;
          (2)若x=﹣1,求所擋的二次三項(xiàng)式的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案