日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,拋物線與直線l交于x軸上的一點(diǎn)A,和另一點(diǎn)

          求拋物線的解析式;

          點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)點(diǎn)PA,B兩點(diǎn)之間,但不包括A,B兩點(diǎn)于點(diǎn)M,軸交AB于點(diǎn)N,求MN的最大值;

          如圖2,將拋物線繞頂點(diǎn)旋轉(zhuǎn)后,再作適當(dāng)平移得到拋物線,已知拋物線的頂點(diǎn)E在第一象限的拋物線上,且拋持線與拋物線交于點(diǎn)D,過(guò)點(diǎn)D軸交拋物線于點(diǎn)F,過(guò)點(diǎn)E軸交拋物線于點(diǎn)G,是否存在這樣的拋物線,使得四邊形DFEG為菱形?若存在,請(qǐng)求E點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          【答案】1;(2;(3點(diǎn)的橫坐標(biāo)為時(shí),四邊形DFEG為菱形

          【解析】

          求直線lx軸交點(diǎn)A坐標(biāo)、B坐標(biāo),用待定系數(shù)法求拋物線的解析式.

          延長(zhǎng)PNx軸于點(diǎn)H,設(shè)點(diǎn)P橫坐標(biāo)為m,由軸可得點(diǎn)N、H橫坐標(biāo)也為m,即能用m表示PN、NH、AH的長(zhǎng).由及對(duì)頂角可得發(fā)現(xiàn)在中,MNPN比值即為,故先在中求的值,再代入,即得到MNm的函數(shù)關(guān)系式,配方即求得MN最大值.

          設(shè)點(diǎn),所以可設(shè)拋物線頂點(diǎn)式為令兩拋物線解析式列得關(guān)于x的方程,解得兩拋物線的另一交點(diǎn)D即為拋物線的頂點(diǎn),故DG,且求得DF平行且等于GE,即四邊形DFEG首先一定是平行四邊形.由DFEG為菱形可得,故此時(shí)為等邊三角形.利用特殊三角函數(shù)值作為等量關(guān)系列方程,即求得e的值.

          解:直線lx軸于點(diǎn)A,

          ,解得:

          ,

          點(diǎn)在直線l上,

          ,

          ,

          拋物線經(jīng)過(guò)點(diǎn)A、B,

          ,

          解得:

          拋物線的解析式為,

          如圖1,延長(zhǎng)PNx軸于點(diǎn)H,

          ,

          設(shè) ,

          軸,

          ,

          ,

          ,

          中,,

          ,

          于點(diǎn)M,

          ,

          ,

          中,,

          的最大值為,

          存在滿足條件的拋物線,使得四邊形DFEG為菱形,

          如圖2,連接DE,過(guò)點(diǎn)E于點(diǎn)Q,

          ,

          拋物線頂點(diǎn)為 ,

          設(shè)

          拋物線頂點(diǎn)式為,

          當(dāng),

          解得:,

          兩拋物線另一交點(diǎn)為拋物線頂點(diǎn),

          軸,軸,

          ,,

          四邊形DFEG是平行四邊形,

          DFEG為菱形,則,

          由拋物線對(duì)稱(chēng)性可得:,

          是等邊三角形,

          ,

          ,

          解得:舍去,,

          點(diǎn)的橫坐標(biāo)為時(shí),四邊形DFEG為菱形.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在中,,點(diǎn)是邊的中點(diǎn),連結(jié),將沿直線翻折得到,連結(jié).若,,則線段的長(zhǎng)為(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校為迎接縣中學(xué)生籃球比賽,計(jì)劃購(gòu)買(mǎi)A、B兩種籃球共20個(gè)供學(xué)生訓(xùn)練使用.若購(gòu)買(mǎi)A種籃球6個(gè),則購(gòu)買(mǎi)兩種籃球共需費(fèi)用720元;若購(gòu)買(mǎi)A種籃球12個(gè),則購(gòu)實(shí)兩種籃球共需費(fèi)用840元.

          1AB兩種籃球共需單價(jià)各多少元?

          2)設(shè)購(gòu)買(mǎi)A種籃球x個(gè)且A種籃球不少于8個(gè),所需費(fèi)用為y元,試確定yx的關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖:甲、乙兩地相距,一輛貨車(chē)和一輛轎車(chē)先后從甲地出發(fā)駛向乙地,線段和折線分別表示貨車(chē)和轎車(chē)離甲地的距離與貨車(chē)出發(fā)時(shí)間之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象解答下列問(wèn)題:

          1)貨車(chē)的速度為___________,當(dāng)轎車(chē)到達(dá)乙地后,貨車(chē)距乙地的距離為____________千米;

          2)求轎車(chē)改變速度后的函數(shù)關(guān)系式;

          3)轎車(chē)到達(dá)乙地后,馬上沿原路以段速度返回,求轎車(chē)從乙地出發(fā)后多長(zhǎng)時(shí)間再次與貨車(chē)相遇?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一般捕魚(yú)船在A處發(fā)出求救信號(hào),位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無(wú)法直線到達(dá).救援艇決定馬上調(diào)整方向,先向北偏東方以每小時(shí)30海里的速度航行,同時(shí)捕魚(yú)船向正北低速航行.30分鐘后,捕魚(yú)船到達(dá)距離A海里的D處,此時(shí)救援艇在C處測(cè)得D處在南偏東的方向上.

          C、D兩點(diǎn)的距離;

          捕魚(yú)船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚(yú)船和救援艇同達(dá)時(shí)到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊長(zhǎng)為2,∠AOC60°,點(diǎn)DAB邊上的一點(diǎn),經(jīng)過(guò)O,AD三點(diǎn)的拋物線與x軸的正半軸交于點(diǎn)E,連結(jié)AEBC于點(diǎn)F,當(dāng)DFAB時(shí),CE的長(zhǎng)為__

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,的周長(zhǎng)為36 cm,對(duì)角線相交于點(diǎn)cm.若點(diǎn)的中點(diǎn),則的周長(zhǎng)為(

          A.10 cmB.15 cmC.20 cmD.30 cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,ABC=ACB,以AC為直徑的O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長(zhǎng)線上,且CAB=2BCP.

          (1)求證:直線CP是O的切線.

          (2)若BC=2,sinBCP=,求點(diǎn)B到AC的距離.

          (3)在第(2)的條件下,求ACP的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線軸,軸分別相交于,兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)的橫坐標(biāo)為4

          1)求的值;

          2)過(guò)點(diǎn)軸,垂足為,點(diǎn)是該反比例函數(shù)的圖象上一點(diǎn),連接,,且

          ①求點(diǎn)的坐標(biāo);

          ②求點(diǎn)到直線的距離的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案