解:(1 )∵二次函數(shù)圖象的頂點(diǎn)為P (4 ,-4 ), ∴設(shè)二次函數(shù)的關(guān)系式為 ![]() 又∵二次函數(shù)圖象經(jīng)過原點(diǎn)(0,0), ∴ ![]() ![]() ∴二次函數(shù)的關(guān)系式為 ![]() ![]() (2)設(shè)直線OA的解析式為y=kx,將A(6,-3)代入得-3=6k,解得 ![]() ∴直線OA的解析式為 ![]() 把x=4代入 ![]() ∴M(4,-2), 又∵點(diǎn)M 、N 關(guān)于點(diǎn)P 對稱, ∴N (4 ,-6 ),MN=4 , ∴ ![]() (3)①證明:過點(diǎn)A作AH⊥l于點(diǎn)H,,l與x軸交于點(diǎn)D。則,設(shè)A( ![]() 則直線OA 的解析式為 ![]() 則M( ![]() ![]() ![]() ∴OD=4,ND=x0,HA= ![]() ![]() ∴ ![]() ∴ ![]() ∴∠ANM=∠ONM; ②不能。理由如下:分三種情況討論: 情況1,若∠ONA是直角,由①,得∠ANM=∠ONM=450, ∴△AHN是等腰直角三角形!郒A=NH,即 ![]() 整理,得 ![]() ![]() ∴此時(shí),點(diǎn)A與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠ONA是直角。 情況2,若∠AON是直角,則 ![]() ∵ ![]() ∴ ![]() 整理,得 ![]() ![]() ∴此時(shí),故點(diǎn)A與原點(diǎn)或與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠AON是直角。 情況3,若∠NAO是直角,則△AMN∽△DMO∽△DON, ∴ ![]() ∵OD=4,MD= ![]() ![]() ∴ ![]() 整理,得 ![]() 解得 ![]() ∴此時(shí),點(diǎn)A與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠ONA是直角, 綜上所述,當(dāng)點(diǎn)A在對稱軸l右側(cè)的二次函數(shù)圖象上運(yùn)動時(shí),△ANO不能成為直角三角形。 |
![]() |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com