日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,頂點(diǎn)為P (4 ,-4 )的二次函數(shù)圖象經(jīng)過原點(diǎn)(0 ,0 ),點(diǎn)A 在該圖象上,OA 交其對稱軸l于點(diǎn)M,點(diǎn)M、N關(guān)于點(diǎn)P對稱,連接AN、ON。
          (1)求該二次函數(shù)的關(guān)系式;
          (2)若點(diǎn)A的坐標(biāo)是(6,-3),求△ANO的面積;
          (3)當(dāng)點(diǎn)A在對稱軸l右側(cè)的二次函數(shù)圖象上運(yùn)動,請解答下列問題:
          ①證明:∠ANM=∠ONM;
          ②△ANO能否為直角三角形?如果能,請求出所有符合條件的點(diǎn)A的坐標(biāo),如果不能,請說明理由。
          解:(1 )∵二次函數(shù)圖象的頂點(diǎn)為P (4 ,-4 ),
          ∴設(shè)二次函數(shù)的關(guān)系式為,                  
          又∵二次函數(shù)圖象經(jīng)過原點(diǎn)(0,0),
          ,解得,                  
          ∴二次函數(shù)的關(guān)系式為,即,            
          (2)設(shè)直線OA的解析式為y=kx,將A(6,-3)代入得-3=6k,解得,                
          ∴直線OA的解析式為
            把x=4代入得y=-2,
          ∴M(4,-2),
          又∵點(diǎn)M 、N 關(guān)于點(diǎn)P 對稱,
          ∴N (4 ,-6 ),MN=4 ,
          ;
          (3)①證明:過點(diǎn)A作AH⊥l于點(diǎn)H,,l與x軸交于點(diǎn)D。則,設(shè)A(),
          則直線OA 的解析式為,
          則M(),N(),H()。
          ∴OD=4,ND=x0,HA=,NH=。

          ,
          ∴∠ANM=∠ONM;
          ②不能。理由如下:分三種情況討論:
          情況1,若∠ONA是直角,由①,得∠ANM=∠ONM=450,
          ∴△AHN是等腰直角三角形!郒A=NH,即。
          整理,得,解得,
          ∴此時(shí),點(diǎn)A與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠ONA是直角。
          情況2,若∠AON是直角,則,
          ,
          ,
          整理,得,解得
          ∴此時(shí),故點(diǎn)A與原點(diǎn)或與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠AON是直角。
          情況3,若∠NAO是直角,則△AMN∽△DMO∽△DON,

          ∵OD=4,MD=,ND=,
          ,
          整理,得,
          解得
          ∴此時(shí),點(diǎn)A與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠ONA是直角,
          綜上所述,當(dāng)點(diǎn)A在對稱軸l右側(cè)的二次函數(shù)圖象上運(yùn)動時(shí),△ANO不能成為直角三角形。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,頂點(diǎn)為D的拋物線y=x2+bx-3與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,連接BC,已知△BOC是等腰三角形.
          (1)求點(diǎn)B的坐標(biāo)及拋物線y=x2+bx-3的解析式;
          (2)求四邊形ACDB的面積;
          (3)若點(diǎn)E(x,y)是y軸右側(cè)的拋物線上不同于點(diǎn)B的任意一點(diǎn),設(shè)以A,B,C,E為頂點(diǎn)的四邊形的面積為S.
          ①求S與x之間的函數(shù)關(guān)系式.
          ②若以A,B,C,E為頂點(diǎn)的四邊形與四邊形ACDB的面積相等,求點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,頂點(diǎn)為D的拋物線y=x2+bx-3與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,連接BC,精英家教網(wǎng)已知tan∠ABC=1.
          (1)求點(diǎn)B的坐標(biāo)及拋物線y=x2+bx-3的解析式;
          (2)在x軸上找一點(diǎn)P,使△CDP的周長最小,并求出點(diǎn)P的坐標(biāo);
          (3)若點(diǎn)E(x,y)是拋物線上不同于A,B,C的任意一點(diǎn),設(shè)以A,B,C,E為頂點(diǎn)的四邊形的面積為S,求S與x之間的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          25、如圖①,頂點(diǎn)為A的拋物線E:y=ax2-2ax(a>0)與坐標(biāo)軸交于O、B兩點(diǎn).拋物線F與拋物線E關(guān)于x軸對稱.
          (1)求拋物線F的解析式及頂點(diǎn)C的坐標(biāo)(可用含a的式子表示);
          (2)如圖②,直線l:y=ax(a>0)經(jīng)過原點(diǎn)且與拋物線E交于點(diǎn)Q,判斷拋物線F的頂點(diǎn)C是否在直線l上;

          (3)直線OQ繞點(diǎn)O旋轉(zhuǎn),在x軸上方與直線BC交于點(diǎn)M,與直線AC交于點(diǎn)N.在旋轉(zhuǎn)過程中,請利用圖③,圖④探究∠OMC與∠ABN滿足怎樣的關(guān)系,并驗(yàn)證.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•懷集縣一模)如圖,頂點(diǎn)為P(4,-4)的二次函數(shù)圖象經(jīng)過原點(diǎn)(0,0),點(diǎn)A在該圖象上,
          OA交其對稱軸l于點(diǎn)M,點(diǎn)M、N關(guān)于點(diǎn)P對稱,連接AN、ON.
          (1)求該二次函數(shù)的關(guān)系式.
          (2)若點(diǎn)A的坐標(biāo)是(6,-3),求△ANO的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•海南)如圖,頂點(diǎn)為P(4,-4)的二次函數(shù)圖象經(jīng)過原點(diǎn)(0,0),點(diǎn)A在該圖象上,OA交其對稱軸l于點(diǎn)M,點(diǎn)M、N關(guān)于點(diǎn)P對稱,連接AN、ON,
          (1)求該二次函數(shù)的關(guān)系式;
          (2)若點(diǎn)A在對稱軸l右側(cè)的二次函數(shù)圖象上運(yùn)動時(shí),請解答下面問題:
          ①證明:∠ANM=∠ONM;
          ②△ANO能否為直角三角形?如果能,請求出所有符合條件的點(diǎn)A的坐標(biāo);如果不能,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案