日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 5.下列計(jì)算正確的是( 。
          A.-$\frac{1}{2}$+$\frac{1}{3}$=$\frac{1}{6}$B.2x2y+xy2=3x2y
          C.-2(xy-$\frac{1}{2}$x2y)=-2xy-x2yD.$\frac{x-1}{2}$-1=$\frac{x+1}{3}$去分母得3(x-1)-6=2(x+1)

          分析 各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.

          解答 解:A、原式=-$\frac{1}{6}$,錯(cuò)誤;
          B、原式不能合并,錯(cuò)誤;
          C、原式=-2xy+x2y,錯(cuò)誤;
          D、方程$\frac{x-1}{2}$-1=$\frac{x+1}{3}$去分母得3(x-1)-6=2(x+1),正確,
          故選D

          點(diǎn)評(píng) 此題考查了解一元一次方程,其步驟為:去分母,去括號(hào),移項(xiàng)合并,把未知數(shù)系數(shù)化為1,求出解.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          15.一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點(diǎn)C到公路的距離為6m.
          (1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的表達(dá)式;
          (2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過計(jì)算說明這輛貨車能否安全通過這條隧道.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          16.已知二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=kx+n(k≠0)的圖象如圖所示,下面有四個(gè)推斷:
          ①二次函數(shù)y1有最大值
          ②二次函數(shù)y1的圖象關(guān)于直線x=-1對稱
          ③當(dāng)x=-2時(shí),二次函數(shù)y1的值大于0
          ④過動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線與y1,y2的圖象的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),m的取值范圍是m<-3或m>-1.
          其中正確的是( 。
          A.①③B.①④C.②③D.②④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          13.拋物線y=-(x-2)2向右平移2個(gè)單位得到的拋物線的解析式為( 。
          A.y=-x2B.y=-(x-4)2C.y=-(x-2)2+2D.y=-(x-2)2-2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          20.如圖,DE∥BC,點(diǎn)A為DC的中點(diǎn),點(diǎn)B,A,E共線,求證:DE=CB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          10.計(jì)算12÷(-3)-2×(-3)之值( 。
          A.-18B.-10C.2D.18

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          17.解方程組$\left\{\begin{array}{l}{x-y=7}\\{5x+4y=-1}\end{array}\right.$.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          14.(1)先化簡,再求值:2x2+y2+(2y2-3x2)-2(y2-2x2),其中x=1,y=2.
          (2)解方程:$\frac{x}{6}$-$\frac{30-x}{4}$=5.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          4.閱讀下列解題過程:
          $\frac{1}{\sqrt{5}+\sqrt{4}}$=$\frac{1×(\sqrt{5}-\sqrt{4})}{(\sqrt{5}+\sqrt{4})(\sqrt{5}-\sqrt{4})}$=$\frac{\sqrt{5}-\sqrt{4}}{(\sqrt{5})^{2}-(\sqrt{4})^{2}}$=$\sqrt{5}-\sqrt{4}$=$\sqrt{5}$-2
          $\frac{1}{\sqrt{6}+\sqrt{5}}$=$\frac{1×(\sqrt{6}-\sqrt{5})}{(\sqrt{6}+\sqrt{5})(\sqrt{6}-\sqrt{5})}$=$\frac{\sqrt{6}-\sqrt{5}}{(\sqrt{6})^{2}-(\sqrt{5})^{2}}$=$\sqrt{6}-\sqrt{5}$
          請回答下列問題:
          (1)觀察上面的解題過程,請直接寫出$\frac{1}{\sqrt{n}+\sqrt{n-1}}$(n≥2)的結(jié)果為$\sqrt{n}$-$\sqrt{n-1}$.
          (2)利用上面所提供的解法,求$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{99}+\sqrt{100}}$的值.

          查看答案和解析>>

          同步練習(xí)冊答案