日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,點(diǎn)D為△ABC的邊BC上一點(diǎn),且AB=AD,點(diǎn)E為△ABC外一點(diǎn),連接AE、DE,使得∠ADE=∠B,∠CAE=∠BAD.
          求證:BC=DE.
          分析:首先證明∠1=∠3,再加上條件∠ADE=∠B,AB=AD可利用ASA定理證明△ABC≌△ADE,再根據(jù)全等三角形對應(yīng)邊相等可得結(jié)論BC=DE.
          解答:證明:∵∠CAE=∠BAD,
          ∴∠CAE+∠2=∠BAD+∠2,
          即∠1=∠3,
          在△ABC和△ADE中
          ∠1=∠3
          AB=AD
          ∠B=∠ADE
          ,
          ∴△ABC≌△ADE(ASA),
          ∴BC=DE.
          點(diǎn)評:本題考查三角形全等的判定方法與性質(zhì),關(guān)鍵是掌握判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,
          注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          25、已知:如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,可以說明:△ACN≌△MCB,從而得到結(jié)論:AN=BM.
          現(xiàn)要求:
          (1)將△ACM繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)180°,使A點(diǎn)落在CB上.請對照原題圖在下圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡);
          (2)在(1)所得到的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請給予證明;若不成立,請說明理由;
          (3)在(1)所得到的圖形中,設(shè)MA的延長線與BN相交于D點(diǎn),請你判斷△ABD與四邊形MDNC的形狀,并說明你的結(jié)論的正確性.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,點(diǎn)E為?ABCD對角線AC上的一點(diǎn),點(diǎn)F在BE的延長線上,且EF=BE,EF與CD相交于點(diǎn)G.
          求證:DF∥AC.
          (請用兩種方法證明,可以添輔助線,可以不添輔助線,如果兩種方法都添輔助線,要求是不同位置的線.)
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖①,點(diǎn)C為線段AB上一點(diǎn),△ACM和△CBN都是等邊三角形,AN,BM交于點(diǎn)P,則△BCM≌△NCA,易證結(jié)論:①BM=AN.
          (1)請寫出除①外的兩個結(jié)論:②
          ∠MBC=∠ANC
          ∠MBC=∠ANC
          ;③
          ∠BMC=∠NAC
          ∠BMC=∠NAC

          (2)將△ACM繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)180°,使點(diǎn)A落在BC上.請對照原題圖形在圖②畫出符合要求的圖形.(不寫作法,保留作圖痕跡)
          (3)在(2)所得到的下圖②中,探究“AN=BM”這一結(jié)論是否成立.若成立,請證明:若不成立,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,點(diǎn)P為線段AB上的動點(diǎn)(與A、B兩點(diǎn)不重合).在同一平面內(nèi),把線段AP、BP分別折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三點(diǎn)共線.若△CDP、△EFP均為等腰三角形,且DF=2,求AB的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,點(diǎn)C為線段AB的中點(diǎn),點(diǎn)E為線段AB上的點(diǎn),點(diǎn)D為線段AE的中點(diǎn),
          (1)若線段AB=a,CE=b,|a-15|+(b-4.5)2=0,求a,b;
          (2)如圖1,在(1)的條件下,求線段DE;
          (3)如圖2,若AB=15,AD=2BE,求線段CE.

          查看答案和解析>>

          同步練習(xí)冊答案