日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•深圳)如圖所示,點(diǎn)P(3a,a)是反比例函數(shù)y=(k>0)與⊙O的一個(gè)交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( )

          A.y=
          B.y=
          C.y=
          D.y=
          【答案】分析:根據(jù)P(3a,a)和勾股定理,求出圓的半徑,進(jìn)而表示出圓的面積,再根據(jù)圓的面積等于陰影部分面積的四倍,求出圓的面積,建立等式即可求出a的值,從而得出反比例函數(shù)的解析式.
          解答:解:由于函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,所以陰影部分面積為圓面積,
          則圓的面積為10π×4=40π.
          因?yàn)镻(3a,a)在第一象限,則a>0,3a>0,
          根據(jù)勾股定理,OP==a.
          于是π=40π,a=±2,(負(fù)值舍去),故a=2.
          P點(diǎn)坐標(biāo)為(6,2).
          將P(6,2)代入y=,
          得:k=6×2=12.
          反比例函數(shù)解析式為:y=
          故選D.
          點(diǎn)評(píng):此題是一道綜合題,既要能熟練正確求出圓的面積,又要會(huì)用待定系數(shù)法求函數(shù)的解析式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2011年中考數(shù)學(xué)實(shí)戰(zhàn)試卷(A卷)(解析版) 題型:解答題

          (2010•深圳)如圖所示,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個(gè)頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
          (1)求拋物線的解析式;
          (2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時(shí),求此時(shí)點(diǎn)M的坐標(biāo);
          (3)在第(2)問的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

          (2010•深圳)如圖所示,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個(gè)頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
          (1)求拋物線的解析式;
          (2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時(shí),求此時(shí)點(diǎn)M的坐標(biāo);
          (3)在第(2)問的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2010•深圳)如圖所示,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個(gè)頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
          (1)求拋物線的解析式;
          (2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時(shí),求此時(shí)點(diǎn)M的坐標(biāo);
          (3)在第(2)問的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

          (2010•深圳)如圖所示,點(diǎn)P(3a,a)是反比例函數(shù)y=(k>0)與⊙O的一個(gè)交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( )

          A.y=
          B.y=
          C.y=
          D.y=

          查看答案和解析>>

          同步練習(xí)冊(cè)答案