日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過點(diǎn)A作∠DAF=∠DAB,過點(diǎn)D作AF的垂線,垂足為F,交AB的延長線于點(diǎn)P,連接CO并延長交⊙O于點(diǎn)G,連接EG,已知DE=4,AE=8.
          (1)求證:DF是⊙O的切線;
          (2)求證:OC2=OEOP;
          (3)求線段EG的長.

          【答案】
          (1)證明:連接OD,如圖1所示:

          ∵OA=OD,

          ∴∠DAB=∠ADO,

          ∵∠DAF=∠DAB,

          ∴∠ADO=∠DAF,

          ∴OD//AF,

          又∵DF⊥AF,

          ∴DF⊥OD,

          ∴DF是⊙O的切線;


          (2)證明:由(1)得:DF⊥OD,

          ∴∠ODF=90°,

          ∵AB⊥CD,

          ∴由射影定理得:OD2=OEOP,

          ∵OC=OD,

          ∴OC2=OEOP


          (3)解:連接DG,如圖2所示:

          ∵AB⊥CD,

          ∴DE=CE=4,

          ∴CD=DE+CE=8,

          設(shè)OD=OA=x,則OE=8﹣x,

          在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,

          即(8﹣x)2+42=x2,

          解得:x=5,

          ∴CG=2OA=10,

          ∵CG是⊙O的直徑,

          ∴∠CDG=90°,

          ∴DG= = =6,

          ∴EG= = =2


          【解析】(1)連接OD,由等腰三角形的性質(zhì)得出∠DAB=∠ADO,再由已知條件得出∠ADO=∠DAF,證出OD//AF,由已知DF⊥AF,得出DF⊥OD,即可得出結(jié)論;(2)由射影定理得出OD2=OEOP,由OC=OD,即可得出OC2=OEOP;(3)連接DG,由垂徑定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列變形中:

          ①由方程=2去分母,得x﹣12=10;

          ②由方程x=兩邊同除以,得x=1;

          ③由方程6x﹣4=x+4移項(xiàng),得7x=0;

          ④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

          錯誤變形的個數(shù)是(  )個

          A. 4 B. 3 C. 2 D. 1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的方格紙中,ABC的頂點(diǎn)都在小正方形的頂點(diǎn)上,以小正方形互相垂直的兩邊所在直線建立直角坐標(biāo)系.

          (1)作出ABC關(guān)于y軸對稱的A1B1C1,其中A,B,C分別和A1,B1,C1對應(yīng);

          (2)平移ABC,使得A點(diǎn)在x軸上,B點(diǎn)在y軸上,平移后的三角形記為A2B2C2作出平移后的A2B2C2,其中A,B,C分別和A2,B2,C2對應(yīng);

          (3)ABC的面積是________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,對角線AC的垂直平分線分別交AB,CD于點(diǎn)E,F(xiàn),連接AF,CE,如果∠BCE=26°,則∠CAF=_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為營造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6min發(fā)現(xiàn)忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前走,小亮取回借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館。已知騎車的速度是步行速度的2倍,如圖是小亮和姐姐距離家的路程y(m)與出發(fā)的時(shí)間x(min)的函數(shù)圖象,根據(jù)圖象解答下列問題:

          (1)小亮在家停留了多長時(shí)間?

          (2)求小亮騎車從家出發(fā)去圖書館時(shí)距家的路程 y(m)與出發(fā)時(shí)間 x(min)之間的函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,CEABAB延長線于點(diǎn)E,點(diǎn)F為點(diǎn)B關(guān)于CE的對稱點(diǎn),連接CF,分別延長DCCF至點(diǎn)G,H,使FH=CG,連接AG,DH交于點(diǎn)P

          (1)依題意補(bǔ)全圖1;

          (2)猜想AGDH的數(shù)量關(guān)系并證明;

          (3)若∠DAB=70°,是否存在點(diǎn)G,使得ADP為等邊三角形?若存在,求出CG的長;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,直線的表達(dá)式為,點(diǎn)AB的坐標(biāo)分別為

          (1,0),(0,2),直線AB與直線相交于點(diǎn)P

          (1)求直線AB的表達(dá)式;

          (2)求點(diǎn)P的坐標(biāo);

          (3)若直線上存在一點(diǎn)C,使得APC的面積是APO的面積的2倍,直接寫出點(diǎn)C的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=--x+8x軸,y軸分別交于點(diǎn)A,點(diǎn)B,點(diǎn)Dy軸的負(fù)半軸上,若將DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.

          (1)AB的長和點(diǎn)C的坐標(biāo);

          (2)求直線CD的表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,量角器的直徑與直角三角板ABC的斜邊AB重合,其中量角器0刻度線的端點(diǎn)N與點(diǎn)A重合,射線CP從CA處出發(fā)沿順時(shí)針方向以每秒2度的速度旋轉(zhuǎn),CP與量角器的半圓弧交于點(diǎn)E,第35秒時(shí),點(diǎn)E在量角器上對應(yīng)的讀數(shù)是度.

          查看答案和解析>>

          同步練習(xí)冊答案