日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F.

          (1)請你判斷并寫出FE與FD之間的數(shù)量關系(不需證明);

          (2)如圖②,如果∠ACB不是直角,其他條件不變,那么在(1)中所得的結論是否仍然成立?若成立,請證明;若不成立,請說明理由.

          【答案】(1)FE=FD (2)答案見解析

          【解析】

          (1)先在AC上截取AG=AE,連結FG,利用SAS判定AEF≌△AGF,得出∠AFE=AFG,F(xiàn)E=FG,再利用ASA判定CFG≌△CFD,得到FG=FD,進而得出FE=FD;

          (2)先過點F分別作FGAB于點G,F(xiàn)HBC于點H,則∠FGE=FHD=90°,根據(jù)已知條件得到∠GEF=HDF,進而判定EGF≌△DHF(AAS),即可得出FE=FD.也可以過點FFGABG,作FHBCH,作FKACK,再判定EFG≌△DFH(ASA),進而得出FE=FD.

          (1)FEFD之間的數(shù)量關系為:FE=FD.

          理由:如圖,在AC上截取AG=AE,連結FG,

          AD是∠BAC的平分線,

          ∴∠1=2,

          AEFAGF

          ,

          ∴△AEF≌△AGF(SAS),

          ∴∠AFE=AFG,F(xiàn)E=FG,

          ∵∠B=60°,AD,CE分別是∠BAC,BCA的平分線,

          22+23+B=180°,

          ∴∠2+3=60°,

          又∵∠AFEAFC的外角,

          ∴∠AFE=CFD=AFG=2+3=60°,

          ∴∠CFG=180°-60°-60°=60°,

          ∴∠GFC=DFC,

          CFGCFD中,

          ,

          ∴△CFG≌△CFD(ASA),

          FG=FD,

          FE=FD;

          (2)結論FE=FD仍然成立.

          如圖,過點F分別作FGAB于點G,F(xiàn)HBC于點H,則∠FGE=FHD=90°,

          ∵∠B=60°,且AD,CE分別是∠BAC,BCA的平分線,

          ∴∠2+3=60°,F(xiàn)ABC的內心,

          ∴∠GEF=BAC+3=1+2+3=60°+1,

          FABC的內心,即F在∠ABC的角平分線上,

          FG=FH,

          又∵∠HDF=B+1=60°+1,

          ∴∠GEF=HDF,

          EGFDHF中,

          ,

          ∴△EGF≌△DHF(AAS),

          FE=FD.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,,點在第一象限,為等邊三角形,,垂足為點,垂足為

          1)求OF的長;

          2)作點關于軸的對稱點,連E,求OE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某中學八年級(5)班的學生到野外進行數(shù)學活動,為了測量一池塘兩端A、B之間的距離,同學們設計了如下兩種方案:

          方案1:如圖(1),先在平地上取一個可以直接到達A、B的點C,連接AC并延長AC至點D,連接BC并延長至點E,使DCAC,ECBC,最后量出DE的距離就是AB的長.

          方案2:如圖(2),過點BAB的垂線BF,在BF上取C、D兩點,使BCCD,接著過DBD的垂線DE,交AC的延長線于E,則測出DE的長即為AB間的距離

          問:(1)方案1是否可行?并說明理由;

          2)方案2是否可行?并說明理由;

          3)小明說:在方案2中,并不一定需要BFAB,DEBF,將BFAB,DEBF換成條   也可以.你認為小明的說法正確嗎?如果正確的話,請你把小明所說的條件補上.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,ABC的頂點均在格點上,C的坐標為4,-1).

          1請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點A1B1、C1的坐標;

          2ABC的面積是

          3Pa+1b-1與點C關于x軸對稱,a= b=

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】問題背景:如圖1:在四邊形ABCD,AB=AD,BAD=120 ,B=ADC=90°.E、F分別是 BC,CD 上的點。且∠EAF=60° . 探究圖中線段BE,EF,FD 之間的數(shù)量關系。 小王同學探究此問題的方法是,延長 FD 到點 G,使 DG=BE,連結 AG,先證明ABE≌△ADG, 再證明AEF≌△AGF,可得出結論,他的結論應是_________;

          探索延伸:如圖2,若四邊形ABCD,AB=AD,B+D=180° .E,F 分別是 BC,CD 上的點,且∠EAF=BAD,上述結論是否仍然成立,并說明理由;

          實際應用:如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°A,艦艇乙在指揮中心南偏東 70°B,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以55 海里/小時的速度前進,艦艇乙沿北偏東 50°的方向以 75 海里/小時的速度前進2小時后, 指揮中心觀測到甲、乙兩艦艇分別到達 E,F ,且兩艦艇之間的夾角為70° ,試求此時兩艦 艇之間的距離。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,、、在同一條直線上,連接.

          1)請找出圖2中的全等三角形,并說明理由(說明:結論中不得含有圖中未標識的字母);

          2垂直嗎?為什么?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校舉辦了一次趣味數(shù)學競賽,滿分100分,學生得分均為整數(shù),達到成績60分及以上為合格,達到90分及以上為優(yōu)秀,這次競賽中,甲乙兩組學生成績如下,甲組:30,60,60,60,60,60,70,90,90,100 ;乙組:50,60,60,60,70,70,70,70,80,90.

          1)以上成績統(tǒng)計分析表中a=______分,b=______分,c=_______分;

          組別

          平均數(shù)

          中位數(shù)

          方差

          合格率

          優(yōu)秀率

          甲組

          68

          a

          376

          30%

          乙組

          b

          c

          90%

          2)小亮同學說:這次競賽我得了70分,在我們小組中屬于中游略偏上,觀察上面表格判斷,小亮可能是甲乙哪個組的學生?并說明理由

          3)計算乙組的方差和優(yōu)秀率,如果你是該校數(shù)學競賽的教練員,現(xiàn)在需要你選一組同學代表學校參加復賽,你會選擇哪一組?并說明理由

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知拋物線y=﹣x2+x+2與直線y=x+2相交于點CD,點P是拋物線在第一象限內的點,它的橫坐標為m,過點PPEx軸,交CD于點F

          (1)求點CD的坐標;

          (2)求拋物線與x軸的交點坐標;

          (3)如果以P、C、O、F為頂點的四邊形是平行四邊形,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,弦CDAB,垂足為H,連接AC,過上一點EEGACCD的延長線于點G,連接AECD于點F,且EG=FG

          1)求證:EG是⊙O的切線;

          2)延長ABGE的延長線于點M,若AH=2,,求OM的長.

          查看答案和解析>>

          同步練習冊答案