日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知A(﹣4,2)、B(a,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象的兩個交點;
          (1)求一次函數(shù)的解析式;
          (2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍;
          (3)求△AOB的面積.

          【答案】
          (1)解:∵m=xy=(﹣4)×2=﹣8,

          ∴﹣4a=﹣8,

          ∴a=2,

          ∴B(2,﹣4).

          將A(﹣4,2)、B(2,﹣4)代入y=kx+b,

          ,解得: ,

          ∴一次函數(shù)的解析式為y=﹣x﹣2


          (2)解:觀察函數(shù)圖象可知:當﹣4<x<0或x>2時,一次函數(shù)圖象在反比例函數(shù)圖象下方,

          ∴一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍:﹣4<x<0或x>2


          (3)解:設直線AB與y軸的交點為C,如圖所示.

          當x=0時,y=﹣x﹣2=﹣2,

          ∴C(0,﹣2),

          ∴OC=2,

          ∴SAOB=SAOC+SBOC= OC|xA|+ OC|xB|= ×2×4+ ×2×2=6.


          【解析】(1)由反比例函數(shù)圖象上點的坐標特征可求出m、a的值,從而得出點B的坐標,根據(jù)點A、B的坐標利用待定系數(shù)法即可求出直線AB的解析式;(2)由兩函數(shù)圖象的上下位置關系結合交點的橫坐標,即可得出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍;(3)設直線AB與y軸的交點為C,利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,進而得出OC的長度,根據(jù)三角形的面積公式結合SAOB=SAOC+SBOC即可求出△AOB的面積.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】a,b是方程x2+2x200的兩個實數(shù)根,則a2+3a+b的值為( 。

          A.18B.21C.20D.18

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,∠AOB是平角,∠AOC=30°,BOD=60°,OM,ON分別是∠AOC,BOD的平分線,∠MON等于________.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】把多項式16m3﹣mn2分解因式的結果是

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】比較大。憨仯ī52__|62|

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如果ab互為相反數(shù),xy互為倒數(shù),則2014a2015xy+2014b的值是__

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】一元二次方程ax2+3x+20a0)的有個根是1,則a_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知點F是等邊△ABC的邊BC延長線上一點,以CF為邊,作菱形CDEF,使菱形CDEF與等邊△ABC在BC的同側,且CD∥AB,連結BE.

          (1)如圖①,若AB=10,EF=8,請計算△BEF的面積;
          (2)如圖②,若點G是BE的中點,連接AG、DG、AD.試探究AG與DG的位置和數(shù)量關系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,已知AD∥BC,且DC⊥AD于D.

          (1)DC與BC有怎樣的位置關系?說說你的理由;

          (2)你能說明∠1+∠2=180°嗎?

          查看答案和解析>>

          同步練習冊答案