日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在圓O中,直徑CD⊥弦AB于點(diǎn)E,點(diǎn)P是CD延長(zhǎng)線上一點(diǎn),連接PB、BD.

          (1)若BD平分∠ABP,求證:PB是圓O的切線;

          (2)若PB是圓O的切線,AB=4,OP=4,求OE的長(zhǎng);

          (3)如圖2,連接AP,延長(zhǎng)BD交AP于點(diǎn)F,若BD⊥AP,AB=2,OP=4,求tan∠BDE的值.

          【答案】(1)見(jiàn)解析;(2)OE=2;(3)tan∠BDE=

          【解析】

          (1)連接BC,BO,根據(jù)圓周角定理得到∠CBD=90°,根據(jù)等腰三角形的性質(zhì)得到∠OBCC,于是得到結(jié)論;

          (2)設(shè)OBr,OEx,證OBE∽△OPB ,即r2=4x,在RtOBE中,由OB2OE2+BE2可得關(guān)于x的方程,解之可得答案;

          (3)連接BCBO,根據(jù)已知條件得到APBC,根據(jù)平行線的性質(zhì)得到∠CAPC,根據(jù)垂徑定理得到AEBE,根據(jù)等腰三角形的性質(zhì)得到CEPE,設(shè)OEx,COBOr,根據(jù)勾股定理即可得到x的值,進(jìn)一步可得DE的長(zhǎng),根據(jù)三角函數(shù)的定義可得答案.

          解:(1)連接BC,BO,

          ∵CD是⊙O的直徑,

          ∴∠CBD=90°,

          ∵CD⊥AB,

          ∴∠DBE=∠C=90°﹣∠CDB,

          ∵OB=OC,

          ∴∠OBC=∠C,

          ∵∠PBD=∠EBD,

          ∴∠PBD=∠OBC,

          ∴∠PBO=90°,

          ∴PB是⊙O的切線;

          (2)設(shè)OB=r,OE=x,

          ∵PB為⊙O的切線,CD⊥AB,

          ∴∠OBP=∠OEB=90°,

          又∵∠BOE=∠POB,

          ∴△OBE∽△OPB,

          ,即,

          ∴r2=4x,

          ∵AB=4,CD⊥AB,

          ∴AE=BE=2,

          在Rt△OBE中,由OB2=OE2+BE2可得4x=x2+4,

          解得:x=2,即OE=2;

          (3)如圖2,連接BC,BO,

          ∵CD是⊙O的直徑,

          ∴BC⊥BD,

          ∵BD⊥AP,

          ∴AP∥BC,

          ∴∠C=∠APC,

          ∵CD是⊙O的直徑,CD⊥AB,

          ∴AE=BE,

          ∴AP=BP,

          ∴∠APC=∠BPC,

          ∴∠C=∠BPC,

          ∴CE=PE,

          設(shè)OE=x,CO=BO=r,

          ∴r+x=4﹣x,

          ∴r=4﹣2x,

          ∵AB=2,

          ∴BE=AB=,

          在Rt△BEO中,BO2=OE2+BE2,即(4﹣2x)2=x2+(2,

          解得:x=1或x=(不合題意,舍去),

          ∴OE=1、OD=OB=4﹣2=2,

          則DE=OD﹣OE=1,

          ∴tan∠BDE=

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,等腰直角△ABC中,∠ACB90°,ACBC4MAB中點(diǎn),D是射線BC上一動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,連接ED、ME,則點(diǎn)D在運(yùn)動(dòng)過(guò)程中ME的最小值為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)D與點(diǎn)A(0,6)、B(0,﹣4)、Cx,y)是平行四邊形的四個(gè)頂點(diǎn),其中x、y滿3x﹣4y+12=0,則CD的最小值為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.

          1當(dāng)k=1,b=1時(shí),拋物線C:y=ax2+bx+1的頂點(diǎn)在直線l:y=kx上,求a的值;

          2若把直線l向上平移k2+1個(gè)單位長(zhǎng)度得到直線r,則無(wú)論非零實(shí)數(shù)k取何值,直線r與拋物線C都只有一個(gè)交點(diǎn);

          (i)求此拋物線的解析式;

          (ii)P是此拋物線上任一點(diǎn),過(guò)點(diǎn)PPQy軸且與直線y=2交于點(diǎn)Q,O為原點(diǎn),

          求證:OP=PQ.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線y=ax2+bx+cx軸于A、B 兩點(diǎn),交 y 軸于 C點(diǎn),其中﹣2h﹣1,﹣1xB<0,下列結(jié)論:①abc>0;②4a﹣2b+c>0;③5a+2c>3b;④(4a﹣b)(2a+b)<0;正確的有(  )個(gè).

          A. 4 B. 3 C. 2 D. 1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀對(duì)學(xué)生的成長(zhǎng)有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表8.

          請(qǐng)根據(jù)圖表中的信息,解答下列問(wèn)題:

          (1)表中的a=______,b=______,中位數(shù)落在________組,將頻數(shù)分布直方圖補(bǔ)全;

          (2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?

          (3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出2人向全校同學(xué)作讀書(shū)心得報(bào)告,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求抽取的2名學(xué)生剛好是1名男生和1名女生的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點(diǎn),且∠A=2∠DCB.EBC邊上的一點(diǎn),以EC為直徑的⊙O經(jīng)過(guò)點(diǎn)D.

          (1)求證:AB⊙O的切線;

          (2)若CD的弦心距為1,BE=EO,求BD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

          (1)求證:AE與⊙O相切于點(diǎn)A;

          (2)若AEBC,BC=2,AC=2,求AD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在不透明的布袋中裝有1個(gè)紅球,2個(gè)白球,它們除顏色外其余完全相同.

          1)從袋中任意摸出兩個(gè)球,試用樹(shù)狀圖或表格列出所有等可能的結(jié)果,并求摸出的球恰好是兩個(gè)白球的概率;

          2)若在布袋中再添加a個(gè)白球,充分?jǐn)噭,從中摸出一個(gè)球,使摸到紅球的概率為,試求a的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案