日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在平面直角坐標(biāo)系中,直線y=-
          34
          x+6
          分別交x軸、y軸于C、A兩點(diǎn).將射線AM繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到射線AN.點(diǎn)D為AM上的動(dòng)點(diǎn),點(diǎn)B為AN上的動(dòng)點(diǎn),點(diǎn)C在∠MAN的內(nèi)部.

          (1)求線段AC的長(zhǎng);
          (2)當(dāng)AM∥x軸(如圖2),且四邊形ABCD為等腰梯形時(shí),求D的坐標(biāo).
          分析:(1)因?yàn)橹本y=-
          3
          4
          x+6
          分別交x軸、y軸于C、A兩點(diǎn).所以分別令y=0,x=0,即可求出點(diǎn)C、點(diǎn)A的坐標(biāo),即可求出OA、OC的長(zhǎng)度,利用勾股定理即可求出AC的長(zhǎng)度;
          (2)設(shè)D(x,6).需要分類討論:①當(dāng)AD∥BC,AB=DC時(shí).根據(jù)等腰梯形的性質(zhì)推知點(diǎn)B在x軸上,并且是直線AN與x軸的交點(diǎn);由點(diǎn)A的坐標(biāo)、等腰直角三角形OAB的性質(zhì)求得OB=OA=6,然后由兩點(diǎn)間的距離公式、等腰梯形中的等量關(guān)系A(chǔ)B=CD來求點(diǎn)D的橫坐標(biāo).②當(dāng)CD∥AB,AD=BC時(shí),易證四邊形ADCP是平行四邊形,所以PC=AD=2,即D點(diǎn)坐標(biāo)是(2,6).
          解答:解:(1)∵直線y=-
          3
          4
          x+6
          分別交x軸、y軸于C、A兩點(diǎn).
          ∴A(0,6),C(8,0),
          則在Rt△AOC中,OA=6,OC=8,
          ∴根據(jù)勾股定理知AC=
          OA2+OC2
          =
          62+82
          =10,即線段AC的長(zhǎng)是10;

          (2)∵AM∥x軸,點(diǎn)D在直線AM上,A(0,6),點(diǎn)C在∠MAN的內(nèi)部,
          ∴設(shè)D(x,6)(x>8).
          如圖1,當(dāng)AD∥BC,AB=CD時(shí).
          ∵AM∥x軸,且四邊形ABCD為等腰梯形,點(diǎn)B在直線AN上,
          ∴點(diǎn)B為直線AN與x軸的交點(diǎn).
          ∵∠DAB=45°,∠DAB=∠ABO(兩直線平行,內(nèi)錯(cuò)角相等),
          ∴∠ABO=45°.
          ∴OA=OB=6,
          ∴AB=CD=6
          2
          ,即
          (x-8)2+62
          =6
          2
          ,
          解得,x=14,或x=2(不合題意,舍去),
          ∴點(diǎn)D的坐標(biāo)為(14,6).
          如圖2,當(dāng)CD∥AB,AD=BC時(shí),設(shè)直線AN與x軸交于點(diǎn)P.
          ∵AD∥PC,AP∥DC,
          ∴四邊形ADCP是平行四邊形,
          ∴PC=AD=2,
          ∴D點(diǎn)坐標(biāo)是(2,6).
          綜上所述,點(diǎn)D的坐標(biāo)為(14,6),或(2,6).
          點(diǎn)評(píng):本題考查了一次函數(shù)綜合題.解答(2)題時(shí),注意“數(shù)形結(jié)合”數(shù)學(xué)思想是應(yīng)用,當(dāng)x=2時(shí),四邊形ABCD是平行四邊形,而非等腰梯形.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
          (2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作
          (2,2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為2
          2
          cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
          (1)點(diǎn)A的坐標(biāo)為
          (-3,2
          2
          (-3,2
          2
          ,點(diǎn)B的坐為
          (-3-2
          2
          ,0)
          (-3-2
          2
          ,0)

          (2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
          (3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059

          學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

          (1)按照這種規(guī)定填寫下表:

          (2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

          (3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀下面的材料:

          小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):

          如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

          如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

          (1)請(qǐng)?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;

          (2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
          (1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
          (2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案