日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在直角邊AC上(點(diǎn)E與A、C兩點(diǎn)均不重合),點(diǎn)F在斜邊AB上(點(diǎn)F與A、B兩點(diǎn)均不重合).
          (1)若EF平分Rt△ABC的周長(zhǎng),設(shè)AE長(zhǎng)為x,試用含x的代數(shù)式表示△AEF的面積;
          (2)是否存在線段EF將Rt△ABC的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)AE的長(zhǎng);若不存在,說明理由.
          【答案】分析:(1)過F作FD⊥AC于點(diǎn)D,則Rt△ADF∽R(shí)t△ACB.根據(jù)對(duì)應(yīng)邊的比相等,可以用含x的代數(shù)式表示出DF,根據(jù)三角形的面積公式就可以得到函數(shù)解析式.
          (2)三角形ACB的面積可以求出,線段EF將Rt△ABC的面積平分,就可以得到一個(gè)關(guān)于x的方程,解方程,就可以求出X的值.
          解答:解:(1)∵∠C=90°,AC=3,BC=4,
          ∴AB=5,
          ∵EF平分Rt△ABC的周長(zhǎng),AE長(zhǎng)為x,
          ∴AF=-x=6-x,
          過F作FD⊥AC于點(diǎn)D,則有Rt△ADF∽R(shí)t△ACB,根據(jù)對(duì)應(yīng)邊的比相等,可以得到:
          FD=(6-x)
          則S△AEF=-x2+x(1<x<3)

          (2)當(dāng)S△AEF=3時(shí)
          解之得x1=,x2=
          ∵1<x<3
          ∴x2=(舍去)
          當(dāng)x=時(shí),6-x=<5
          ∴這樣的EF存在.
          點(diǎn)評(píng):本題是函數(shù)與相似形的性質(zhì)相結(jié)合的題目.主要利用了相似三角形的性質(zhì),對(duì)應(yīng)邊的比相等.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

          (2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在直角邊AC上(點(diǎn)E與A、C兩點(diǎn)均不重合),點(diǎn)F在斜邊AB上(點(diǎn)F與A、B兩點(diǎn)均不重合).
          (1)若EF平分Rt△ABC的周長(zhǎng),設(shè)AE長(zhǎng)為x,試用含x的代數(shù)式表示△AEF的面積;
          (2)是否存在線段EF將Rt△ABC的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)AE的長(zhǎng);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

          (2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在直角邊AC上(點(diǎn)E與A、C兩點(diǎn)均不重合),點(diǎn)F在斜邊AB上(點(diǎn)F與A、B兩點(diǎn)均不重合).
          (1)若EF平分Rt△ABC的周長(zhǎng),設(shè)AE長(zhǎng)為x,試用含x的代數(shù)式表示△AEF的面積;
          (2)是否存在線段EF將Rt△ABC的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)AE的長(zhǎng);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

          (2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在直角邊AC上(點(diǎn)E與A、C兩點(diǎn)均不重合),點(diǎn)F在斜邊AB上(點(diǎn)F與A、B兩點(diǎn)均不重合).
          (1)若EF平分Rt△ABC的周長(zhǎng),設(shè)AE長(zhǎng)為x,試用含x的代數(shù)式表示△AEF的面積;
          (2)是否存在線段EF將Rt△ABC的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)AE的長(zhǎng);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

          (2005•寧夏)在下面網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,請(qǐng)你畫出以格點(diǎn)為頂點(diǎn),面積為10個(gè)平方單位的等腰三角形,在給出的網(wǎng)格中畫出兩個(gè)符合條件且不全等的三角形.
          (所畫的兩個(gè)三角形若全等視為1個(gè))

          查看答案和解析>>

          同步練習(xí)冊(cè)答案