日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點(diǎn)A(0,4)和B(1,﹣2).
          (1)求此拋物線的解析式;
          (2)求此拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
          (3)設(shè)拋物線的頂點(diǎn)為C,試求△CAO的面積.

          【答案】
          (1)解:把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,

          得: ,解得:

          所以此拋物線的解析式為y=﹣2x2﹣4x+4


          (2)解:∵y=﹣2x2﹣4x+4

          =﹣2(x2+2x)+4

          =﹣2[(x+1)2﹣1]+4

          =﹣2(x+1)2+6,

          ∴此拋物線的對(duì)稱軸為直線x=﹣1,頂點(diǎn)坐標(biāo)為(﹣1,6)


          (3)解:由(2)知:頂點(diǎn)C(﹣1,6),

          ∵點(diǎn)A(0,4),∴OA=4,

          ∴SCAO= OA|xc|= ×4×1=2,

          即△CAO的面積為2


          【解析】(1)利用待定系數(shù)法把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c中,可以解得b,c的值,從而求得函數(shù)關(guān)系式即可;(2)利用配方法求出圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);(3)由(2)可得頂點(diǎn)C的坐標(biāo),再根據(jù)三角形的面積公式即可求出△CAO的面積.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形,矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為mn , 將菱形的“接近度”定義為|m-n|,于是,|m-n|越小,菱形越接近于正方形.若菱形的一個(gè)內(nèi)角為70°,則該菱形的“接近度”等于;當(dāng)菱形的“接近度”等于時(shí),菱形是正方形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=kx+b的圖象如圖所示,則一元二次方程x2+x+k﹣1=0根的存在情況是(
          A.沒有實(shí)數(shù)根
          B.有兩個(gè)相等的實(shí)數(shù)根
          C.有兩個(gè)不相等的實(shí)數(shù)根
          D.無法確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是(
          A.函數(shù)有最小值
          B.對(duì)稱軸是直線x=
          C.當(dāng)x< ,y隨x的增大而減小
          D.當(dāng)﹣1<x<2時(shí),y>0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在平行四邊形ABCD中,AE⊥BC交于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′,若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為(
          A.130°
          B.150°
          C.160°
          D.170°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】課堂上學(xué)習(xí)了勾股定理后,知道勾三、股四、弦五.王老師給出一組數(shù)讓學(xué)生觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,學(xué)生發(fā)現(xiàn)這些勾股 數(shù)的勾都是奇數(shù),且從 3 起就沒有間斷過,于是王老師提出以下問題讓學(xué)生解決.

          (1)請(qǐng)你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11、________、________;

          (2)若第一個(gè)數(shù)用字母a(a為奇數(shù),且a≥3)表示,那么后兩個(gè)數(shù)用含a的代數(shù)式分別怎么表示?小明發(fā)現(xiàn)每組第二個(gè)數(shù)有這樣的規(guī)律4=,12=,24=……,于是他很快表示了第二數(shù)為 ,則用含a的代數(shù)式表示第三個(gè)數(shù)為________;

          (3)用所學(xué)知識(shí)證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.
          (1)求證:△BEC≌△DEC;
          (2)延長BE交AD于F,當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠C=90°,AB=AD=50,BC=64,連結(jié)BD,AE⊥BD垂足為E,
          (1)求證:△ABE∽△DCB;
          (2)求線段DC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

          解:設(shè)x24x=y

          原式=y+2)(y+6+4 (第一步)

          =y2+8y+16 (第二步)

          =y+42(第三步)

          =x24x+42(第四步)

          回答下列問題:

          1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

          A.提取公因式

          B.平方差公式

          C.兩數(shù)和的完全平方公式

          D.兩數(shù)差的完全平方公式

          2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________

          3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案