日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•東城區(qū)二模)如圖,在直角梯形ABCD中,AD∥BC,DC⊥BC,AB=10,AD=6,DC=8,BC=12,點E在下底邊BC上,點F在AB上.
          (1)若EF平分直角梯形ABCD的周長,設(shè)BE的長為x,試用含x的代數(shù)式表示△BEF的面積;
          (2)是否存在線段EF將直角梯形ABCD的周長和面積同時平分?若存在,求出此時BE的長;若不存在,請說明理由;
          (3)若線段EF將直角梯形ABCD的周長分為1:2兩部分,將△BEF的面積記為S1,五邊形AFECD的面積記為S2,且S1:S2=K求出k的最大值.

          【答案】分析:(1)由已知,得梯形周長=36,高=8,面積=72.用含x的代數(shù)式表示△BEF的面積,只需求FG即可;
          (2)根據(jù)函數(shù)關(guān)系式無解,知不存在線段EF將直角梯形ABCD的周長和面積同時平分.
          (3)由已知易知,線段EF將直角梯形ABCD的周長分為1:2兩部分,只能是FB+BE與FA+AD+DC+CE的比是1:2,則有k=S1:S2=,要使k取最大值,只需S1取最大值,根據(jù)S△BEF=,求出S1取最大值.得出k的最大值是
          解答:解:(1)∵EF平分直角梯形ABCD的周長,BE=x,
          x+BF=10-BF+6+8+12-x,
          BF=18-x
          由已知,得梯形周長=36,高=8,面積=72.
          過點F作FG⊥BC于點G,過點A作AK⊥BC于點K,
          則△BFG∽△BAK,
          =,
          =,
          可得FG=
          S△BEF=(3分)

          (2)不存在.(4分)
          由(1)=36,
          整理得:(x-9)2=-9,此方程無解.(5分)
          不存在線段EF將直角梯形ABCD的周長和面積同時平分.

          (3)由已知易知,線段EF將直角梯形ABCD的周長分為1:2兩部分,只能是FB+BE與FA+AD+DC+CE的比是1:2.(6分)
          k=S1:S2=要使k取最大值,只需S1取最大值.
          與(1)同理,F(xiàn)G=S1=,
          當(dāng)x=6時,S1取最大值.此時k=
          ∴k的最大值是.(8分)
          點評:本題結(jié)合直角梯形的性質(zhì)考查二次函數(shù)的綜合應(yīng)用,注意此題三角形邊與面積,梯形周長,高,面積相互間的關(guān)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(36)(解析版) 題型:選擇題

          (2009•東城區(qū)二模)如圖a是長方形紙帶,∠DEF=10°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的tan∠DHF的度數(shù)是( )

          A.
          B.
          C.1
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(26)(解析版) 題型:選擇題

          (2009•東城區(qū)二模)如圖a是長方形紙帶,∠DEF=10°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的tan∠DHF的度數(shù)是( )

          A.
          B.
          C.1
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年北京市東城區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          (2009•東城區(qū)二模)點A、B、C在同一直線上,在直線AC的同側(cè)作△ABE和△BCF,連接AF,CE.取AF、CE的中點M、N,連接BM,BN,MN.
          (1)若△ABE和△FBC是等腰直角三角形,且∠ABE=∠FBC=90°(圖1),則△MBN是______三角形;
          (2)在△ABE和△BCF中,若BA=BE,BC=BF,且∠ABE=∠FBC=α,(圖2),則△MBN是______三角形,且∠MBN=______;
          (3)若將(2)中的△ABE繞點B旋轉(zhuǎn)一定角度,(圖3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,給出你的證明;若不成立,寫出正確的結(jié)論并給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年北京市東城區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          (2009•東城區(qū)二模)請設(shè)計一種方案:把正方形ABCD剪兩刀,使剪得的三塊圖形能夠拼成一個三角形,畫出必要的示意圖.
          (1)使拼成的三角形是等腰三角形;(圖1)
          (2)使拼成的三角形既不是直角三角形也不是等腰三角形.(圖2)

          查看答案和解析>>

          同步練習(xí)冊答案