日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn)O是等腰直角三角形ABC斜邊上的中點(diǎn),AB=BC,EAC上一點(diǎn),連結(jié)EB.

          (1) 如圖1,若點(diǎn)E在線段AC上,過點(diǎn)AAMBE,垂足為M,交BO于點(diǎn)F.求證:OE=OF

          (2)如圖2,若點(diǎn)EAC的延長(zhǎng)線上,AMBE于點(diǎn)M,交OB的延長(zhǎng)線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說明理由.

          【答案】見解析

          【解析】試題分析:1由三角形ABC是等腰直角三角形,AB=BC得到BAC=∠ACB=45°,又由點(diǎn)OAC邊上的中點(diǎn)得到BOE=∠AOF=90°,ABO=∠CBO=45°,從而得到BAC=∠ABO,OB=OA,又由AMBE,得到MEA+∠MAE=90°=∠AFO+∠MAE,

          故有MEA=∠AFO得到RtBOE≌RtAOF,從而得到結(jié)論;

          2同(1)可證明RtBOE≌RtAOF,從而得到OE=OF

          試題解析:1)證明:三角形ABC是等腰直角三角形,AB=BC

          ∴∠BAC=∠ACB=45°

          又點(diǎn)OAC邊上的中點(diǎn),

          ∴∠BOE=∠AOF=90°,ABO=∠CBO=45°

          ∴∠BAC=∠ABO,OB=OA,

          AMBE

          ∴∠MEA+∠MAE=90°=∠AFO+∠MAE,

          ∴∠MEA=∠AFO,

          ∴RtBOE≌RtAOF,OE=OF;

          2OE=OF成立;

          證明:三角形ABC是等腰直角三角形,AB=BC,

          ∴∠BAC=∠ACB=45°

          又點(diǎn)OAC邊上的中點(diǎn),

          ∴∠BOE=∠AOF=90°ABO=∠CBO=45°

          ∴∠BAC=∠ABO,OB=OA,

          AMBE,

          ∴∠F+∠MBF=90°=∠B+∠OBE,

          ∵∠MBF=∠OBE,∴∠F=∠E

          ∴RtBOE≌RtAOF,

          OE=OF

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一漁船由西往東航行,在點(diǎn)測(cè)得海島位于北偏東的方向,前進(jìn)海里到達(dá)點(diǎn),此時(shí),測(cè)得海島位于北偏東的方向,則海島到航線的距離等于________海里.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在ABC中,AB=AC,BAC=90°,AE是過A點(diǎn)的一條直線,且B,CAE的異側(cè),BDAED,CEAEE.

          (1)ABDCAE全等嗎?BDDE+CE相等嗎?請(qǐng)說明理由。

          (2)如圖2,若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖②所示的位置(BD<CE)時(shí),其余條件不變,則BDDE、CE的關(guān)系如何?請(qǐng)說明理由

          (3)如圖3,若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖③所示的位置(BD>CE)時(shí),其余條件不變,則BDDECE的關(guān)系如何?

          (4)根據(jù)以上的討論,請(qǐng)用簡(jiǎn)潔的語言表達(dá)BDDE、CE的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)如圖1,ACBDCE均為等邊三角形,點(diǎn)AD,E在同一直線上,連接BE,則AEB的度數(shù)為__________.

          (2)如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,點(diǎn)A,D,E在同一直線上,CMDCEDE邊上的高,連接BE.求AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一枚棋子放在七角棋盤的第0號(hào)角,現(xiàn)依逆時(shí)針方向移動(dòng)這枚棋子,其各步依次移動(dòng)1,2,3,…,n個(gè)角,如第一步從0號(hào)角移動(dòng)到第1號(hào)角,第二步從第1號(hào)角移動(dòng)到第3號(hào)角,第三步從第3號(hào)角移動(dòng)到第6號(hào)角,….若這枚棋子不停地移動(dòng)下去,則這枚棋子永遠(yuǎn)不能到達(dá)的角的個(gè)數(shù)是( )

          A.0 B.1 C.2 D.3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABCD中,EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.

          (1)求證:AB=CF;

          (2)連接DE,若AD=2AB,求證:DEAF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖的中,,且上一點(diǎn).今打算在上找一點(diǎn),在上找一點(diǎn),使得全等,以下是甲、乙兩人的作法:

          (甲)連接,作的中垂線分別交、點(diǎn)、點(diǎn),則、兩點(diǎn)即為所求

          (乙)過作與平行的直線交點(diǎn),過作與平行的直線交點(diǎn),則、兩點(diǎn)即為所求

          對(duì)于甲、乙兩人的作法,下列判斷何者正確?( 。

          A. 兩人皆正確B. 兩人皆錯(cuò)誤

          C. 甲正確,乙錯(cuò)誤D. 甲錯(cuò)誤,乙正確

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,在ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

          (1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DEDF,求證:BE=AF;

          (2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DEDF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC△ECD都是等邊三角形,B、C、D三點(diǎn)在一條直線上,ADBE相交于點(diǎn)OADCE相交于點(diǎn)F,ACBE相交于點(diǎn)G

          1△BCE△ACD全等嗎?請(qǐng)說明理由.

          2)求∠BOD度數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案