日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】1)探索發(fā)現(xiàn):如圖1,已知RtABC中,∠ACB90°,ACBC,直線l過點C,過點AADl,過點BBEl,垂足分別為DE.求證:ADCE,CDBE

          2)遷移應用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標系內(nèi),三角板的一個銳角的頂點與坐標原點O重合,另兩個頂點均落在第一象限內(nèi),已知點M的坐標為(1,3),求點N的坐標.

          3)拓展應用:如圖3,在平面直角坐標系內(nèi),已知直線y=﹣3x+3y軸交于點P,與x軸交于點Q,將直線PQP點沿逆時針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點R.求點R的坐標.

          【答案】(1)見解析(2)(42)(3)(6,0

          【解析】

          1)先判斷出∠ACB=ADC,再判斷出∠CAD=BCE,進而判斷出△ACD≌△CBE,即可得出結(jié)論;

          2)先判斷出MF=NG,OF=MG,進而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出結(jié)論;

          3)先求出OP=3,由y=0x=1,進而得出Q1,0),OQ=1,再判斷出PQ=SQ,即可判斷出OH=4,SH=0Q=1,進而求出直線PR的解析式,即可得出結(jié)論.

          證明:∵∠ACB90°,ADl

          ∴∠ACB=∠ADC

          ∵∠ACE=∠ADC+CAD,∠ACE=∠ACB+BCE

          ∴∠CAD=∠BCE,

          ∵∠ADC=∠CEB90°,ACBC

          ∴△ACD≌△CBE,

          ADCE,CDBE,

          2)解:如圖2,過點MMFy軸,垂足為F,過點NNGMF,交FM的延長線于G

          由已知得OMON,且∠OMN90°

          ∴由(1)得MFNGOFMG,

          M13

          MF1,OF3

          MG3,NG1

          FGMF+MG1+34

          OFNG312,

          ∴點N的坐標為(4,2),

          3)如圖3,過點QQSPQ,交PRS,過點SSHx軸于H,

          對于直線y=﹣3x+3,由x0y3

          P03),

          OP3

          y0x1,

          Q1,0),OQ1,

          ∵∠QPR45°

          ∴∠PSQ45°=∠QPS

          PQSQ

          ∴由(1)得SHOQ,QHOP

          OHOQ+QHOQ+OP3+14SHOQ1

          S4,1),

          設直線PRykx+b,則 ,解得

          ∴直線PRy=﹣x+3

          y0得,x6

          R6,0).

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】RtABC中,∠C90°,AC6,BC8,點D、E分別是斜邊AB和直角邊BC上的點,把△ABC沿著直線DE折疊,頂點B的對應點是點B′

          (1)如圖①,如果點B′和點A重合,求CE的長.

          (2)如圖②,如果點B′落在直角邊AC的中點上,求BE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知四邊形ABCD是邊長為4的正方形,EAB的中點,將△ADE繞點D沿逆時針方向旋轉(zhuǎn)后得到△DCF,連接EF,則EF的長為( 。

          A. 2 B. 2 C. 2 D. 2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且

          A(-1,0),B(4,0),∠ACB=90°.

          (1)求過A、B、C三點的拋物線解析式;

          (2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;

          (3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.

          圖1 備用圖

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀下列材料,并解答其后的問題:

          我國古代南宋數(shù)學家秦九韶在其所著書《數(shù)學九章》中,利用“三斜求積術(shù)”十分巧妙的解決了已知三角形三邊求其面積的問題,這與西方著名的“海倫公式”是完全等價的.我們也稱這個公式為“海倫秦九韶公式”,該公式是:設△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,△ABC的面積為S

          1)(舉例應用)已知△ABC中,∠A、∠B、∠C所對的邊分別為a、bc,且a4b5,c7,則△ABC的面積為   ;

          2)(實際應用)有一塊四邊形的草地如圖所示,現(xiàn)測得AB=(2+4m,BC5mCD7m,AD4m,∠A60°,求該塊草地的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】甲從A地出發(fā)步行到B地,乙同時從B地步行出發(fā)至A地,2小時后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時.若設甲剛出發(fā)時的速度為a千米/小時,乙剛出發(fā)的速度為b千米/小時.

          1A、B兩地的距離可以表示為   千米(用含a,b的代數(shù)式表示);

          2)甲從AB所用的時間是:   小時(用含a,b的代數(shù)式表示);

          乙從BA所用的時間是:   小時(用含ab的代數(shù)式表示).

          3)若當甲到達B地后立刻按原路向A返行,當乙到達A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時36分鐘又再次相遇,請問AB兩地的距離為多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,直線l1的解析表達式為y=-3x+3,且l1x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2,交于點C

          1)求點D的坐標;

          2)求直線l2的解析表達式;

          3)求ADC的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)a0°<a360°),得到矩形AEFG

          1)如圖1,當點EBD上時求證:FD=CD

          2)當a為何值時,GC=GB?畫出圖形,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】小明在家中利用物理知識稱量某個品牌純牛奶的凈含量,稱得六盒純牛奶的含量分別為:248mL,250mL,249mL,251mL,249mL,253mL,對于這組數(shù)據(jù),下列說法正確的是( ).

          A.平均數(shù)為251mL B.中位數(shù)為249mL

          C.眾數(shù)為250mL D.方差為

          查看答案和解析>>

          同步練習冊答案