日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 9.在△ABC中,∠B=45°,∠C=30°.
          (1)如圖1,若AB=5$\sqrt{2}$,求BC的長(zhǎng);
          (2)點(diǎn)D是BC邊上一點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AE.
          ①如圖2,當(dāng)點(diǎn)E在AC邊上時(shí),求證:CE=2BD;
          ②如圖3,當(dāng)點(diǎn)E在AC的垂直平分線上時(shí),直接寫(xiě)出$\frac{AB}{CE}$的值.

          分析 (1)如圖1中,過(guò)點(diǎn)A作AH⊥BC于H,分別在Rt△ABH,Rt△AHC中求出BH、HC,即可得到BC的長(zhǎng);
          (2)如圖2中,過(guò)點(diǎn)A作AP⊥AB交BC于P,連接PE,由△ABD≌△APE,可得BD=PE,再利用30度角直角三角形性質(zhì)即可得到CE=2BD;
          (3)如圖3中,作AH⊥BC于H,AC的垂直平分線交AC于P,交BC于M,則AP=PC,作DK⊥AB于K,設(shè)BK=DK=a,則AK=$\sqrt{3}$a,AD=2a,只要證明∠BAD=30°即可得出$\frac{AB}{CE}$的值.

          解答 解:(1)如圖1,過(guò)點(diǎn)A作AH⊥BC于H,則∠AHB=∠AHC=90°,
          在Rt△AHB中,∵AB=5$\sqrt{2}$,∠B=45°,
          ∴BH=ABcosB=5,AH=ABsinB=5,
          在Rt△AHC中,∵∠C=30°,
          ∴AC=2AH=10,CH=ACcosC=5$\sqrt{3}$,
          ∴BC=BH+CH=5+5$\sqrt{3}$;

          (2)①證明:如圖2,過(guò)點(diǎn)A作AP⊥AB交BC于P,連接PE,則∠BAP=90°,∠APB=45°,
          由旋轉(zhuǎn)可得,AD=AE,∠DAE=90°,
          ∴∠BAP=90°=∠DAE,
          ∴∠BAD=∠PAE,
          ∵∠B=∠APB=45°,
          ∴AB=AP,
          在△ABD和△APE中,
          $\left\{\begin{array}{l}{AB=AP}\\{∠BAD=∠PAE}\\{AD=AE}\end{array}\right.$,
          ∴△ABD≌△APE,
          ∴BD=PE,∠B=∠APE=45°,
          ∴∠EPB=∠EPC=90°,
          ∵∠C=30°,
          ∴CE=2PE,
          ∴CE=2BD;

          ②如圖3,作AH⊥BC于H,AC的垂直平分線交AC于P,交BC于M,則AP=PC,
          在Rt△AHC中,∵∠ACH=30°,
          ∴AC=2AH,
          ∴AH=AP,
          在Rt△AHD和Rt△APE中,
          $\left\{\begin{array}{l}{AH=AP}\\{AD=AE}\end{array}\right.$,
          ∴△AHD≌△APE(HL),
          ∴∠DAH=∠EAP,
          ∵EM⊥AC,PA=PC,
          ∴MA=MC,
          ∴∠MAC=∠MCA=∠MAH=30°,
          ∴∠DAM=∠EAM=$\frac{1}{2}$∠DAE=45°,
          ∴∠DAH=∠EAP=15°,
          ∴∠BAD=∠BAH-∠DAH=30°,
          如圖3,作DK⊥AB于K,
          設(shè)BK=DK=a,則AK=$\sqrt{3}$a,AD=2a,
          ∴$\frac{AB}{AD}$=$\frac{a+\sqrt{3}a}{2a}$=$\frac{\sqrt{3}+1}{2}$,
          ∵AE=CE=AD,
          ∴$\frac{AB}{CE}$=$\frac{{\sqrt{3}+1}}{2}$.

          點(diǎn)評(píng) 本題屬于幾何變換綜合題,主要考查全等三角形的判定和性質(zhì)、含30°角直角三角形的性質(zhì)、線段垂直平分線性質(zhì)以及三角形內(nèi)角和定理等知識(shí)的綜合應(yīng)用,解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形和特殊直角三角形,學(xué)會(huì)設(shè)參數(shù)解決問(wèn)題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          19.下列式子正確的是( 。
          A.-2.1>-2.01B.-2>0C.$\frac{1}{3}$<$\frac{1}{4}$D.-15<13

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          20.按如圖所示的計(jì)算程序計(jì)算,若開(kāi)始輸入的數(shù)為x=2,則最后輸出的數(shù)為231

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          17.如圖,鐘面上的時(shí)間是8:30,再經(jīng)過(guò)t分鐘,時(shí)針、分針第一次重合,則t為( 。
          A.$\frac{75}{6}$B.$\frac{150}{11}$C.$\frac{150}{13}$D.$\frac{180}{11}$

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          4.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A的坐標(biāo)為(0,-1),點(diǎn)C(m,0)是x軸上的一個(gè)動(dòng)點(diǎn).
          (1)如圖1,點(diǎn)B在第四象限,△AOB和△BCD都是等邊三角形,點(diǎn)D在BC的上方,當(dāng)點(diǎn)C在x軸上運(yùn)動(dòng)到如圖所示的位置時(shí),連接AD,請(qǐng)證明△ABD≌△OBC;
          (2)如圖2,點(diǎn)B在x軸的正半軸上,△ABO和△ACD都是等腰直角三角形,點(diǎn)D在AC的上方,∠D=90°,當(dāng)點(diǎn)C在x軸上運(yùn)動(dòng)(m>1)時(shí),設(shè)點(diǎn)D的坐標(biāo)為(x,y),請(qǐng)?zhí)角髖與x之間的函數(shù)表達(dá)式;
          (3)如圖3,四邊形ACEF是菱形,且∠ACE=90°,點(diǎn)E在AC的上方,當(dāng)點(diǎn)C在x軸上運(yùn)動(dòng)(m>1)時(shí),設(shè)點(diǎn)E的坐標(biāo)為(x,y),請(qǐng)?zhí)角髖與x之間的函數(shù)表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          14.如圖,已知點(diǎn)C在線段AB的延長(zhǎng)線上,AC=16cm,AB=6cm,點(diǎn)D是線段AB的中點(diǎn),點(diǎn)E是線段BC的中點(diǎn),求線段DE的長(zhǎng)度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          1.?dāng)S一枚質(zhì)地不均勻的骰子,做了大量的重復(fù)試驗(yàn),發(fā)現(xiàn)“朝上一面為6點(diǎn)”出現(xiàn)的頻率越來(lái)越穩(wěn)定于0.4.那么,擲一次該骰子,“朝上一面為6點(diǎn)”的概率為0.4.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          18.若一個(gè)角比它的補(bǔ)角大36°48′,則這個(gè)角為108°24′.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          19.如圖,正方形OABC的邊長(zhǎng)為2,以O(shè)為圓心,EF為直徑的半圓經(jīng)過(guò)點(diǎn)A,連接AE,CF相交于點(diǎn)P,將正方形OABC從OA與OF重合的位置開(kāi)始,繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,交點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)是( 。
          A.B.$\sqrt{2}$πC.3$\sqrt{2}$D.4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案