日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF。
          (1)求證:OF∥BC;
          (2)求證:△AFO≌△CEB;
          (3)若EB=5cm,CD=cm,設(shè)OE=x,求x值及陰影部分的面積。

          解:(1)∵AB為⊙O的直徑,
          ∴AC⊥BC,
          又∵OF⊥AC,
          ∴OF∥BC;
          (2)∵AB⊥CD,
          ,
          ∴∠CAB=∠BCD,
          又∵∠AFO=∠CEB=90°,OF=BE,
          ∴△AFO≌△CEB(AAS);
          (3)∵AB⊥CD,
          ∴CE=CD=,
          在Rt△OCE中,OC=OB=x+5,
          根據(jù)勾股定理可得:,
          解得:x=5
          ∴tan∠COE=,
          ∴∠COE=60°,
          ∴∠COD=120°,
          ∴扇形COD的面積是:,
          △COD的面積是:
          ∴陰影部分的面積是:(cm2)。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          22、如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點(diǎn),弦PQ交CD于E,則PE•EQ的值是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知AB為半⊙O的直徑,直線MN與⊙O相切于C點(diǎn),AE⊥MN于E,BF⊥MN于F.
          求證:(1)AE+BF=AB;(2)EF2=4AE•BF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知AB為⊙O的直徑,直線l與⊙O相切于點(diǎn)D,AC⊥l于C,AC交⊙O于點(diǎn)E,DF⊥AB于F.
          (1)圖中哪條線段與BF相等?試證明你的結(jié)論;
          (2)若AE=3,CD=2,求⊙O的直徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•包頭)如圖,已知AB為⊙O的直徑,過⊙O上的點(diǎn)C的切線交AB的延長線于點(diǎn)E,AD⊥EC于點(diǎn)D且交⊙O于點(diǎn)F,連接BC,CF,AC.
          (1)求證:BC=CF;
          (2)若AD=6,DE=8,求BE的長;
          (3)求證:AF+2DF=AB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•呼和浩特)如圖,已知AB為⊙O的直徑,PA與⊙O相切于點(diǎn)A,線段OP與弦AC垂直并相交于點(diǎn)D,OP與弧AC相交于點(diǎn)E,連接BC.
          (1)求證:∠PAC=∠B,且PA•BC=AB•CD;
          (2)若PA=10,sinP=
          35
          ,求PE的長.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案