【題目】如圖,已知拋物線交
軸于
兩點(diǎn),交
軸正半軸于
,且
.
(1)求兩點(diǎn)的坐標(biāo);
(2)是第二象限拋物線上一點(diǎn),坐標(biāo)為
,連接
,求
的面積;
(3)在(2)的條件下,是第一象限拋物線上一點(diǎn),連接
交
軸于
,連接
并延長交拋物線與點(diǎn)
,連接
交
軸于
,將點(diǎn)
繞點(diǎn)
逆時針旋轉(zhuǎn)90°得到點(diǎn)
連接
,若
軸,求Q點(diǎn)坐標(biāo).
【答案】(1),
;
(2);
(3);
【解析】
(1)根據(jù)二次函數(shù)的解析式可以先確定對稱軸為:,所以結(jié)合二次函數(shù)的對稱性即可確定
兩點(diǎn)的坐標(biāo);
(2)根據(jù)(1)中求出的兩點(diǎn)坐標(biāo)可以將二次函數(shù)表示為
,進(jìn)一步化簡可以得到
,那么
點(diǎn)的坐標(biāo)就可以表示為
,將
點(diǎn)的坐標(biāo)代入二次函數(shù)的解析式即可解出
,從而求得
點(diǎn)和
點(diǎn)的坐標(biāo),利用鉛錘高即可求出
的面積;
(3)首先根據(jù)題意作出點(diǎn),并分別過點(diǎn)
作
軸,過點(diǎn)
作
軸,結(jié)合二次函數(shù)的解析式設(shè)出
,求出直線
的解析式,再進(jìn)一步求出直線
的解析式,根據(jù)直線和拋物線的交點(diǎn)問題求出含參數(shù)的
坐標(biāo),然后結(jié)合相似三角形確定
坐標(biāo),即可求解;
(1) 二次函數(shù)的解析式為:
二次函數(shù)的對稱軸為:
,
(2)由(1)得,
二次函數(shù)得解析式為:
把點(diǎn)代入二次函數(shù)解析式
可得:
化簡得:
解得:(舍)
設(shè)直線與
軸交于點(diǎn)
,直線
的解析式為:
將兩點(diǎn)代入可得:
直線
的解析式為:
(3)根據(jù)題意作出點(diǎn),分別過點(diǎn)
作
軸,過點(diǎn)
作
軸
由(2)可得:
二次函數(shù)的解析式為:
設(shè) ,直線
的解析式為:
將,
兩點(diǎn)代入
解得:
設(shè)直線的解析式為:
將,
兩點(diǎn)代入
解得:
直線
與拋物線交于點(diǎn)
令
解得:
點(diǎn)的橫坐標(biāo)為
點(diǎn)
是由
點(diǎn)繞
點(diǎn)逆時針旋轉(zhuǎn)
得到
,
軸,
軸
在和
中:
軸
點(diǎn)的橫坐標(biāo)為
,即
軸
,即
設(shè)直線的解析式為:
將,
兩點(diǎn)代入可得:
直線
與拋物線交于點(diǎn)
令
解得:
點(diǎn)的橫坐標(biāo)為
,將
代入
可得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線,直線
與拋物線、
軸分別相交于
、
.
(1)時,
點(diǎn)的坐標(biāo)為________;
(2)當(dāng)、
兩點(diǎn)重合時,求
的值;
(3)當(dāng)點(diǎn)達(dá)到最高時,求拋物線解析式;
(4)在拋物線與
軸所圍成的封閉圖形的邊界上,我們把橫坐標(biāo)是整數(shù)的點(diǎn)稱為“可點(diǎn)”,直接寫出
時“可點(diǎn)”的個數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形中,
是
的中點(diǎn),過點(diǎn)
作
和
的垂線,垂足分別為點(diǎn)
和點(diǎn)
,四邊形
沿著
方向以每秒
個單位的速度勻速運(yùn)動,點(diǎn)
與點(diǎn)
重合時停止運(yùn)動,設(shè)運(yùn)動時間為
,運(yùn)動過程中四邊形
與
的重疊部分面積為
.則
關(guān)于
的函數(shù)圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費(fèi)悄況,隨機(jī)抽取部分家庭,對每戶家庭的文化教育年消費(fèi)金額進(jìn)行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖表.
請你根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問題:
組別 | 家庭年文化教育消費(fèi)金額x(元) | 戶數(shù) |
A | x≤5000 | 36 |
B | 5000<x≤10000 | m |
C | 10000<x≤15000 | 27 |
D | 15000<x≤20000 | 15 |
E | x>20000 | 30 |
(1)本次被調(diào)査的家庭有__________戶,表中 m=__________;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計(jì)圖中,D組所在扇形的圓心角是__________度;
(3)這個社區(qū)有2500戶家庭,請你估計(jì)家庭年文化教育消費(fèi)10000元以上的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、點(diǎn)D為⊙O上兩點(diǎn),線段BC切⊙O于點(diǎn)B,點(diǎn)D在BC的垂直平分線上,CD∥OA,sin∠BCD=,OA=2BD,若BC=
,則⊙O的半徑為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在以BC為直徑的⊙O上,連接AB、AC,點(diǎn)H為AB的中點(diǎn).過點(diǎn)H的弦DE⊥BC于點(diǎn)F,連接CD、CH.
(1)求證:AB2=2BC·BF
(2)取AC的中點(diǎn)G,連接HG,過點(diǎn)D作線段DI與AC交于點(diǎn)J,與HJ的延長線交于點(diǎn)I.若AB=AG=4,求DJ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在奉賢創(chuàng)建文明城區(qū)的活動中,有兩段長度相等的彩色道磚鋪設(shè)任務(wù),分別交給甲、乙兩個施工隊(duì)同時進(jìn)行施工.如圖是反映所鋪設(shè)彩色道磚的長度y(米)與施工時間x(時)之間關(guān)系的部分圖象.請解答下列問題:
(1)求乙隊(duì)在2≤x≤6的時段內(nèi),y與x之間的函數(shù)關(guān)系式;
(2)如果甲隊(duì)施工速度不變,乙隊(duì)在開挖6小時后,施工速度增加到12米/時,結(jié)果兩隊(duì)同時完成了任務(wù).求甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚的長度為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形中,
,
,沿對角線
將矩形分成兩個直角三角形,如圖1,其中
不動,
沿射線
的方向以每秒
的速度平移,如圖2.
(1)在平移過程中,當(dāng)滿足什么條件時,四邊形是菱形?說明理由;
(2)當(dāng)四邊形是菱形時,平移了多少秒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com