日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在中,,點(diǎn)OBC上一點(diǎn),以點(diǎn)O圓心,OC為半徑的圓交BC于點(diǎn)D,恰好與AB相切于點(diǎn)E

          求證:AO的平分線;

          ,,求AC的長(zhǎng).

          【答案】(1)證明見(jiàn)解析;(2)12cm.

          【解析】

          (1)由∠ACB=90°,且OC為圓O的半徑,判斷得到AC與圓O相切,又AB與圓O相切,根據(jù)切線長(zhǎng)定理得到AO為∠BAC的平分線,且AE=AC;

          (2)由BE為圓O的切線,BC為圓O的割線,利用切割線定理列出關(guān)系式,將BD及BE的長(zhǎng)代入,求出BC的長(zhǎng),用BC-BD求出直徑CD的長(zhǎng),進(jìn)而確定出圓O的半徑,由OD+BD求出OB的長(zhǎng),連接OE,由切線的性質(zhì)得到OE垂直于BE,在直角三角形OEB中,利用銳角三角函數(shù)定義求出sinB的值,同時(shí)由OB及OE的長(zhǎng),利用勾股定理求出BE的長(zhǎng),由∠ACB=90°,OC為圓O的半徑,可得出AC為圓O的切線,由AE與AC都為圓的切線,根據(jù)切線長(zhǎng)定理得到AE=AC,設(shè)AC=AE=xcm,由AE+EB表示出AB,再由BC及AC,在直角三角形ABC中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,即為AC的長(zhǎng).

          ,OC為圓O的半徑,

          為圓O的切線,又AB與圓O相切,E為切點(diǎn),

          ,AO平分

          為圓O的切線,BC為圓O的割線,

          ,又,,

          ,即,

          ,

          連接OE,由BE為圓O的切線,得到,

          在直角三角形BEO中,,

          ,,

          在直角三角形ABC中,設(shè),則,

          ,

          根據(jù)勾股定理得:,即,

          解得:,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,A點(diǎn)的初始位置位于數(shù)軸上表示1的點(diǎn),現(xiàn)對(duì)A點(diǎn)做如下移動(dòng):第1次向左移動(dòng)3個(gè)單位長(zhǎng)度至B點(diǎn),第2次從B點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度至C點(diǎn),第3次從C點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度至D點(diǎn),第4次從D點(diǎn)向右移動(dòng)12個(gè)單位長(zhǎng)度至E點(diǎn),,依此類(lèi)推.這樣第_____次移動(dòng)到的點(diǎn)到原點(diǎn)的距離為2018.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD,ABDC,B=55°,1=85°,2=40°

          (1)求∠D的度數(shù);

          (2)求證:四邊形ABCD是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形紙片ABCD的邊長(zhǎng)為3,點(diǎn)E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點(diǎn)B,D恰好都落在點(diǎn)G處,已知BE=1,則EF的長(zhǎng)為(
          A.1.5
          B.2.5
          C.2.25
          D.3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育科目測(cè)試(把成績(jī)結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
          (1)求本次抽樣測(cè)試的學(xué)生人數(shù);
          (2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
          (3)該市九年級(jí)共有學(xué)生9000名,如果全部參加這次體育測(cè)試,則測(cè)試等級(jí)為D的約有多少人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,四邊形ABCD是任意四邊形,AC與BD交于點(diǎn)O.試說(shuō)明:AC+BD> (AB+BC+CD+DA).

          解:在△OAB中有OA+OB>AB,

          在△OAD中有______________,

          在△ODC中有______________

          在△________中有______________,

          ∴OA+OB+OA+OD+OD+OC+OB+OC>AB+AD+CD+BC,

          ________________________

          ∴AC+BD> (AB+BC+CD+DA).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD的對(duì)角線ACBD交于點(diǎn)O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( 。

          A. OA=OC,ADBC B. ABC=ADC,ADBC

          C. AB=DC,AD=BC D. ABD=ADB,BAO=DCO

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣3,0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.

          (1)求拋物線的解析式;
          (2)線段AB上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
          (3)拋物線的對(duì)稱軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:
          ①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=
          其中正確的結(jié)論有( )

          A.4個(gè)
          B.3個(gè)
          C.2個(gè)
          D.1個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案