日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD交⊙O于點E

          1)求證:AC平分∠DAB;

          2)連接BC,若cosCAD,⊙O的半徑為5,求CDAE的值.

          【答案】1)見解析;(2CD,AE

          【解析】

          1)連接OC,如圖,利用切線的性質(zhì)得OCCD,則OCAD,根據(jù)平行線的性質(zhì)得到∠2=∠3,加上∠1=∠3,所以∠1=∠2;

          2)連接BC、BEBEOCF,如圖,利用圓周角定理得到∠AEB=∠ACB90°,在RtACB中利用余弦定義可計算出AC8,則在RtACD中可計算出AD ,從而利用勾股定理計算出CD ,利用四邊形DEFC為矩形得到EFCDOFBE,然后根據(jù)勾股定理可計算出AE

          1)證明:連接OC,如圖,

          CD為切線,

          OCCD,

          ADCD,

          OCAD,

          ∴∠2=∠3,

          OCOA,

          ∴∠1=∠3,

          ∴∠1=∠2,

          AC平分∠DAB;

          2)解:連接BCBE,BEOCF,如圖,

          AB為直徑,

          ∴∠AEB=∠ACB90°,

          RtACB中,∵cos1cos2,

          AC ×108,

          RtACD中,cos2 ,

          AD×8,

          CD

          易得四邊形DEFC為矩形,

          EFCD,OFBE,

          BE2EF

          RtABE中,AE

          CD,AE

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知ABC中,ABC=90°

          (1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標明字母)

          ①作線段AC的垂直平分線l,交AC于點O;

          ②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;

          ③連接DA、DC

          (2)判斷四邊形ABCD的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,中,,,.點出發(fā)沿運動,速度為每秒,點是點為對稱中心的對稱點,點運動的同時,點出發(fā)沿運動,速度為每秒,當點到達頂點時,同時停止運動,設(shè)兩點運動時間為秒.

          1)當為何值時,?

          2)設(shè)四邊形的面積為,求關(guān)于的函數(shù)關(guān)系式;

          3)四邊形面積能否是面積的?若能,求出此時的值;若不能,請說明理由;

          4)當為何值時,為等腰三角形?(直接寫出結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,四邊形ABCD的位置如圖所示,解答下列問題:

          1)將四邊形ABCD先向左平移4個單位,再向下平移6個單位,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1;

          2)將四邊形A1B1C1D1繞點A1逆時針旋轉(zhuǎn)90°,得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2,并寫出點C2的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A10),B﹣3,0)兩點.

          1)求該拋物線的解析式;

          2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標;若不存在,請說明理由;

          3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,對折矩形紙片,使重合,得到折痕,然后把再對折到,使點落在上的點處,若,則的長度為(

          A.1B.C.D.25

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知,,斜邊,將繞點順時針旋轉(zhuǎn),得到,連接.點從點出發(fā),沿方向勻速行動,速度為;同時,點從點出發(fā),沿方向勻速運動,速度為;當一個點停止運動,另一個點也停讓運動.連接,于點.設(shè)運動時間為,解答下列問題:

          1)當為何值時,平分?

          2)設(shè)四邊形的面積為,求的函教關(guān)系式;

          3)在運動過程中,當時,求四邊形的面積;

          4)在運動過程中,是否存在某一時刻,使點為線段的中點?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABC中,∠ACB=90°,AC=BCCDAB邊上的中線,點E為線段CD上一點(不與點C、D重合),連接BE,作EFBEAC的延長線交于點F,與BC交于點G,連接BF

          1)求證:CFG∽△EBG

          2)求∠EFB的度數(shù);

          3)求的值;

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,在平面直角坐標系內(nèi),A,Bx軸上兩點,以AB為直徑的⊙My軸于C,D兩點,C的中點,弦AEy軸于點F,且點A的坐標為(2,0),CD8

          1)求⊙M的半徑;

          2)動點P在⊙M的圓周上運動.

          ①如圖1,當FP的長度最大時,點P記為P,在圖1中畫出點P0,并求出點P0橫坐標a的值;

          ②如圖1,當EP平分∠AEB時,求EP的長度;

          ③如圖2,過點D作⊙M的切線交x軸于點Q,當點P與點A,B不重合時,請證明為定值.

          查看答案和解析>>

          同步練習冊答案