日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在菱形中,,點(diǎn)分別是線段上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且,相交于點(diǎn).給出如下幾個(gè)結(jié)論:

          平分;

          ③若,則

          其中正確的結(jié)論是_____________(填寫所有正確結(jié)論的序號(hào))

          【答案】①②④

          【解析】

          根據(jù)菱形的性質(zhì)得到ABAD,推出△ABD為等邊三角形,得到∠A=∠BDF60,根據(jù)全等三角形的判定得到△AED≌△DFB;過點(diǎn)CCMGBM,CNGDN(如圖1),根據(jù)全等三角形的性質(zhì)得到CNCM,根據(jù)角平分線的定義得到CG平分∠BGD;過點(diǎn)FFPAEDEP點(diǎn)(如圖2),根據(jù)平行線分線段成比例定理得到BG6GF,再得到;推出B、CD、G四點(diǎn)共圓,根據(jù)圓周角定理得到∠BGC=∠BDC60,∠DGC=∠DBC60,求得∠BGC=∠DGC60,過點(diǎn)CCMGBMCNGDN(如圖1),推出S四邊形BCDGS四邊形CMGN,于是得到S四邊形CMGN2SCMG2××CG×CGCG2

          ①∵ABCD為菱形,

          ABAD,

          ABBD,

          ∴△ABD為等邊三角形,

          ∴∠A=∠BDF60,

          又∵AEDFADBD,

          ∴△AED≌△DFBSAS),故本選項(xiàng)正確;

          ②過點(diǎn)CCMGBM,CNGDN(如圖1),

          則△CBM≌△CDNAAS),

          CNCM

          CGCG,

          RtCNGRtCMGHL),

          ∴∠DGC=∠BGC,

          CG平分∠BGD;故本選項(xiàng)正確;

          ③過點(diǎn)FFPAEDEP點(diǎn)(如圖2),

          AF2FD,

          FPAEDFDA13,

          AEDF,ABAD

          BE2AE,

          FPBEFP2AE16,

          FPAE,

          PFBE,

          FGBGFPBE16

          BG6GF,

          故本選項(xiàng)錯(cuò)誤;

          ④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF60=∠BCD,

          即∠BGD+∠BCD180,

          ∴點(diǎn)B、CD、G四點(diǎn)共圓,

          ∴∠BGC=∠BDC60,∠DGC=∠DBC60

          ∴∠BGC=∠DGC60,

          過點(diǎn)CCMGBMCNGDN(如圖1),

          則△CBM≌△CDNAAS),

          S四邊形BCDGS四邊形CMGN

          S四邊形CMGN2SCMG,

          ∵∠CGM60,∴∠GCM60

          GMCG,CM=CG

          S四邊形CMGN2SCMG2×××CG×CGCG2,故本選項(xiàng)正確;

          故答案為:①②④

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,ABa,點(diǎn)E,F在對角線BD上,且∠ECF=∠ABD,將△BCE繞點(diǎn)C旋轉(zhuǎn)一定角度后,得到△DCG,連接FG.則下列結(jié)論:

          ①∠FCG=∠CDG;

          ②△CEF的面積等于

          FC平分∠BFG;

          BE2+DF2EF2;

          其中正確的結(jié)論是_____.(填寫所有正確結(jié)論的序號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,拋物線y=a-4axx軸交于A,B兩點(diǎn)(AB的左側(cè))

          (1)求點(diǎn)A,B的坐標(biāo);

          (2)已知點(diǎn)C(2,1),P(1,-a),點(diǎn)Q在直線PC上,且Q點(diǎn)的橫坐標(biāo)為4

          ①求Q點(diǎn)的縱坐標(biāo)(用含a的式子表示);

          ②若拋物線與線段PQ恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1、圖2分別是8×8的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長均為1,線段AB的端點(diǎn)在小正方形的頂點(diǎn)上,請?jiān)趫D1、圖2中各畫一個(gè)圖形,分別滿足以下要求:

          1)在圖1中畫一個(gè)以線段AB為一邊的正方形,并求出此正方形的面積;(所畫正方形各頂點(diǎn)必須在小正方形的頂點(diǎn)上)

          2)在圖2中畫一個(gè)以線段AB為一邊的等腰三角形,所畫等腰三角形各頂點(diǎn)必須在小正方形的頂點(diǎn)上,且所畫等腰三角形的面積為12

          1 2 備用圖

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)在拋物線的圖象上,且則線段長的最大值與最小值的差為(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)中,拋物線過點(diǎn),點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),軸,交直線于點(diǎn),連接,交直線于點(diǎn)

          在如下坐標(biāo)系作出該拋物線簡圖,并求拋物線的函數(shù)表達(dá)式;

          當(dāng)時(shí),求點(diǎn)的坐標(biāo);

          求線段的最大值:

          當(dāng)線段最大時(shí),若點(diǎn)在直線上且,直接寫出點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在初中階段的函數(shù)學(xué)習(xí)中我們經(jīng)歷了確定函數(shù)的表達(dá),利用函數(shù)圖象研究其性質(zhì)﹣﹣運(yùn)用函數(shù)解決問題的學(xué)習(xí)過程,在畫函數(shù)圖象時(shí),我們通過描點(diǎn)或平移的方法畫出了所學(xué)的函數(shù)圖象.已知函數(shù)y2b的定義域?yàn)?/span>x≥3,且當(dāng)x0時(shí)y22由此,請根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y2b的圖象與性質(zhì)進(jìn)行如下探究:

          1)函數(shù)的解析式為:   

          2)在給定的平面直角坐標(biāo)系xOy中,畫出該函數(shù)的圖象并寫出該函數(shù)的一條性質(zhì):   

          3)結(jié)合你所畫的函數(shù)圖象與yx+1的圖象,直接寫出不等式2b≤x+1的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題發(fā)現(xiàn):

          (1)如圖1,在RtABC中,∠A90°,ABkAC(k1)DAB上一點(diǎn),DEBC,則BD,EC的數(shù)量關(guān)系為   

          類比探究

          (2)如圖2,將△AED繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°<a90°),連接CE,BD,請問(1)BDEC的數(shù)量關(guān)系還成立嗎?說明理由

          拓展延伸:

          (3)如圖3,在(2)的條件下,將△AED繞點(diǎn)A繼續(xù)旋轉(zhuǎn),旋轉(zhuǎn)角為a(a90°).直線BD,CE交于F點(diǎn),若AC1,AB,則當(dāng)∠ACE15°時(shí),BFCF的值為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=﹣x2+2x+mx軸于點(diǎn)Aa0)和Bb,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)結(jié)論:

          ①點(diǎn)C的坐標(biāo)為(0,m);

          ②當(dāng)m0時(shí),ABD是等腰直角三角形;

          ③若a=﹣1,則b4;

          ④拋物線上有兩點(diǎn)Px1,y1)和Qx2,y2),若x11x2,且x1+x22,則y1y2

          其中結(jié)論正確的序號(hào)是_____

          查看答案和解析>>

          同步練習(xí)冊答案