日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 為了探索代數(shù)式的最小值,小明巧妙的運(yùn)用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作,連結(jié)AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則 則問題即轉(zhuǎn)化成求AC+CE的最小值.

          (1)我們知道當(dāng)A、C、E在同一直線上時(shí), AC+CE的值最小,于是可求得的最小值等于         ,此時(shí)       ;
          (2)請(qǐng)你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.

          (1)10,           (2) 13.

          解析

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年四川省樂至縣九年級(jí)上學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

          為了探索代數(shù)式的最小值,

          小張巧妙的運(yùn)用了數(shù)學(xué)思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作,連結(jié)AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則 則問題即轉(zhuǎn)化成求AC+CE的最小值.

          (1)我們知道當(dāng)A、C、E在同一直線上時(shí),AC+CE的值最小,于是可求得的最小值等于       ,此時(shí)        ;

          (2)題中“小張巧妙的運(yùn)用了數(shù)學(xué)思想”是指哪種主要的數(shù)學(xué)思想?

          (選填:函數(shù)思想,分類討論思想、類比思想、數(shù)形結(jié)合思想)

          (3)請(qǐng)你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省麗水市青田縣中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

          為了探索代數(shù)式的最小值,小明巧妙的運(yùn)用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作,連結(jié)AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則 則問題即轉(zhuǎn)化成求AC+CE的最小值.

          (1)我們知道當(dāng)A、C、E在同一直線上時(shí), AC+CE的值最小,于是可求得的最小值等于          ,此時(shí)        ;

           

          (2)請(qǐng)你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年江西省鷹潭市貴溪市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          為了探索代數(shù)式的最小值,小明巧妙的運(yùn)用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則,則問題即轉(zhuǎn)化成求AC+CE的最小值.
          (1)我們知道當(dāng)A、C、E在同一直線上時(shí),AC+CE的值最小,于是可求得的最小值等于______,此時(shí)x=______;
          (2)請(qǐng)你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年浙江省金華市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

          為了探索代數(shù)式的最小值,小明巧妙的運(yùn)用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則,,則問題即轉(zhuǎn)化成求AC+CE的最小值.
          (1)我們知道當(dāng)A、C、E在同一直線上時(shí),AC+CE的值最小,于是可求得的最小值等于______,此時(shí)x=______;
          (2)請(qǐng)你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案