【題目】如圖①,直角三角形AOB中,∠AOB=90°,AB平行于x軸,OA=2OB,AB=5,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A.
(1)直接寫(xiě)出反比例函數(shù)的解析式;
(2)如圖②,P(x,y)在(1)中的反比例函數(shù)圖象上,其中1<x<8,連接OP,過(guò)O 作OQ⊥OP,且OP=2OQ,連接PQ.設(shè)Q坐標(biāo)為(m,n),其中m<0,n>0,求n與m的函數(shù)解析式,并直接寫(xiě)出自變量m的取值范圍;
(3)在(2)的條件下,若Q坐標(biāo)為(m,1),求△POQ的面積.
【答案】(1)y=;(2)n=
(﹣4<m<﹣
);(3)5.
【解析】
(1)如圖①,
∵∠AOB=90°,
∴OA2+OB2=AB2,
∵OA=2OB,AB=5,
∴4OB2+OB2=25,解得OB=,
∴OA=2,
∵AB平行于x軸,
∴OC⊥AB,
∴OCAB=
OBOA,即OC=
=2,
在Rt△AOC中,AC=4,
∴A點(diǎn)坐標(biāo)為(4,2),
設(shè)過(guò)A點(diǎn)的反比例函數(shù)解析式為y=,
∴k=4×2=8,
∴反比例函數(shù)解析式為y=;
(2)分別過(guò)P、Q作x軸垂線,垂足分別為D、H,如圖②,
∵OQ⊥OP,
∴∠POH+∠QOD=90°,
∵∠POH+∠OPH=90°,
∴∠QOD=∠OPH,
∴Rt△POH∽Rt△OQD,
∴,
∵P(x,y)在(1)中的反比例函數(shù)圖象上,其中1<x<8,Q點(diǎn)坐標(biāo)為(m,n),其中m<0,n>0,OP=2OQ,
∴PH=y,OH=x,OD=﹣m,QD=n,
∴,解得x=2n,y=﹣2m,
∵y=,
∴2n(﹣2m)=8,
∴mn=﹣2(﹣4<m<﹣),
∴n=(﹣4<m<﹣
);
(3)∵n=1時(shí),m=﹣2,即Q點(diǎn)坐標(biāo)為(﹣2,1),
∴OQ=,
∴OP=2OQ=,
∴S△POQ=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作AC的垂線交AC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE與⊙O相切;
(2)若CD=BF,AE=3,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)體商戶購(gòu)進(jìn)某種電子產(chǎn)品的進(jìn)價(jià)是50元/個(gè),根據(jù)市場(chǎng)調(diào)研發(fā)現(xiàn)售價(jià)是80元/個(gè)時(shí),每周可賣(mài)出160個(gè).若銷(xiāo)售單價(jià)每個(gè)降低2元,則每周可多賣(mài)出個(gè).設(shè)銷(xiāo)售價(jià)格每個(gè)降低
元,每周銷(xiāo)售量為y個(gè).
(1)求出銷(xiāo)售量個(gè)與降價(jià)
元之間的函數(shù)關(guān)系式;
(2)設(shè)商戶每周獲得的利潤(rùn)為W元,當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每周銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,平面內(nèi)的兩條直線點(diǎn)
在直線
上,點(diǎn)
在直線
上,過(guò)
兩點(diǎn)分別作
的垂線,垂足分別為
,我們把線段
叫做線段
在直線
上的正投影,其長(zhǎng)度可記為
或
特別地,線段
在直線
上的正投影就是線段
.請(qǐng)依據(jù)上述定義解決如下問(wèn)題:
(1)如圖①,若,則
.
(2)如圖②,在矩形中,
,
,則
.
(3)如圖③,在矩形中,點(diǎn)
在
邊上(
),連接
、
,
①若,求矩形
的面積.
②如圖④,點(diǎn)在
延長(zhǎng)線上,連按
,若
,
,
,求
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),將正方形ABCD與正方形GECF的頂點(diǎn)C重合,當(dāng)正方形GECF的頂點(diǎn)G在正方形ABCD的對(duì)角線AC上時(shí),的值為______.
如圖(2),將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)a角(0°<a<45°),猜測(cè)AG與BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
如圖(3),將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)a角(45°<a<90°)使得B、E、G三點(diǎn)在一條直線上,此時(shí)tan∠GAC=,AG=6,求△BCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】石獅泰禾某童裝專賣(mài)店在銷(xiāo)售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷(xiāo)售價(jià)為120元時(shí),每天可售出20件,為了迎接“十一”國(guó)慶節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷(xiāo)售量,增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.
(1)設(shè)每件童裝降價(jià)x元時(shí),每天可銷(xiāo)售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)
(2)每件童裝降價(jià)多少元時(shí),平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與
軸、
軸分別相交于點(diǎn)A(-1,0)和B(0,3),其頂點(diǎn)為D。
(1)求這條拋物線的解析式;
(2)畫(huà)出此拋物線;
(3)若拋物線與軸的另一個(gè)交點(diǎn)為E,求△ODE的面積;
(4)拋物線的對(duì)稱軸上是否存在點(diǎn)P使得△PAB的周長(zhǎng)最短。若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,
(2)畫(huà)出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2,
(3)△A1B1C1與△A2B2C2成軸對(duì)稱圖形嗎?若成軸對(duì)稱圖形,畫(huà)出所有的對(duì)稱軸并寫(xiě)出對(duì)稱軸;
(4)△A1B1C1與△A2B2C2成中心對(duì)稱圖形嗎?若成中心對(duì)稱圖形,寫(xiě)出所有的對(duì)稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中解答的填空題,其中答對(duì)的是( )
A.若,則x=2B.若
的一個(gè)根是1,則k=2
C.若,則x=2D.若
的值為0,則x=1或2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com