日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•莆田)已知:等邊△ABC的邊長(zhǎng)為a.
          探究(1):如圖1,過等邊△ABC的頂點(diǎn)A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=a;
          探究(2):在等邊△ABC內(nèi)取一點(diǎn)O,過點(diǎn)O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點(diǎn)D、E、F.
          ①如圖2,若點(diǎn)O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質(zhì)得到兩個(gè)正確結(jié)論(不必證明):結(jié)論1. OD+OE+OF=a;結(jié)論2. AD+BE+CF=a;
          ②如圖3,若點(diǎn)O是等邊△ABC內(nèi)任意一點(diǎn),則上述結(jié)論1,2是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說明理由.

          【答案】分析:(1)本題中△ABC為等邊三角形,AB=BC=a,∠ABC=60°,求出∠N,∠G的值,在直角△AMB、△CNB中,可以先用a表示出MB,NB然后再表示出MN,這樣就能證得MN=a;
          (2)判定①是否成立可通過構(gòu)建直角三角形,把所求的線段都轉(zhuǎn)化到直角三角形中進(jìn)行求解;
          判斷②是否成立,也要通過構(gòu)建直角三角形,可根據(jù)勾股定理,把所求的線段都表示出來,然后經(jīng)過化簡(jiǎn)得出結(jié)論②是否正確.
          解答:(1)證明:如圖1,∵△ABC為等邊三角形,
          ∴∠ABC=60°.
          ∵BC⊥MN,BA⊥MG,
          ∴∠CBM=∠BAM=90°.
          ∴∠ABM=90°-∠ABC=30°.
          ∴∠M=90°-∠ABM=60°.
          同理:∠N=∠G=60°.
          ∴△MNG為等邊三角形.
          在Rt△ABM中,BM=a,
          在Rt△BCN中,BN=a,
          ∴MN=BM+BN=a.

          (2)②:結(jié)論1成立.
          證明:如圖3,過點(diǎn)O作GH∥BC,分別交AB、AC于點(diǎn)G、H,過點(diǎn)H作HM⊥BC于點(diǎn)M,
          ∴∠DGO=∠B=60°,∠OHF=∠C=60°,
          ∴△AGH是等邊三角形,
          ∴GH=AH.
          ∵OE⊥BC,
          ∴OE∥HM,
          ∴四邊形OEMH是矩形,
          ∴HM=OE.
          在Rt△ODG中,OD=OG•sin∠DGO=OG•sin60°=OG,
          在Rt△OFH中,OF=OH•sin∠OHF=OH•sin60°=OH,
          在Rt△HMC中,HM=HC•sinC=HC•sin60°=HC,
          ∴OD+OE+OF=OD+HM+OF=OG+HC+OH
          =(GH+HC)=AC=a.

          (2)②:結(jié)論2成立.
          證明:如圖4,連接OA、OB、OC,根據(jù)勾股定理得:
          BE2+OE2=OB2=BD2+OD2①,
          CF2+OF2=OC2=CE2+OE2②,
          AD2+OD2=AO2=AF2+OF2③,
          ①+②+③得:BE2+CF2+AD2=BD2+CE2+AF2,
          ∴BE2+CF2+AD2=(a-AD)2+(a-BE)2+(a-CF)2=a2-2AD•a+AD2+a2-2BE•a+BE2+a2-2CF•a+CF2
          整理得:2a(AD+BE+CF)=3a2
          ∴AD+BE+CF=a.
          點(diǎn)評(píng):本題中綜合考查了等邊三角形的判定和性質(zhì),解直角三角形等知識(shí)點(diǎn),由于知識(shí)點(diǎn)比較多,本題的難度比較大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

          (2009•莆田)已知,如圖1,過點(diǎn)E(0,-1)作平行于x軸的直線l,拋物線y=x2上的兩點(diǎn)A、B的橫坐標(biāo)分別為-1和4,直線AB交y軸于點(diǎn)F,過點(diǎn)A、B分別作直線l的垂線,垂足分別為點(diǎn)C、D,連接CF、DF.
          (1)求點(diǎn)A、B、F的坐標(biāo);
          (2)求證:CF⊥DF;
          (3)點(diǎn)P是拋物線y=x2對(duì)稱軸右側(cè)圖象上的一動(dòng)點(diǎn),過點(diǎn)P作PQ⊥PO交x軸于點(diǎn)Q,是否存在點(diǎn)P使得△OPQ與△CDF相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年福建省莆田市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2009•莆田)已知,如圖1,過點(diǎn)E(0,-1)作平行于x軸的直線l,拋物線y=x2上的兩點(diǎn)A、B的橫坐標(biāo)分別為-1和4,直線AB交y軸于點(diǎn)F,過點(diǎn)A、B分別作直線l的垂線,垂足分別為點(diǎn)C、D,連接CF、DF.
          (1)求點(diǎn)A、B、F的坐標(biāo);
          (2)求證:CF⊥DF;
          (3)點(diǎn)P是拋物線y=x2對(duì)稱軸右側(cè)圖象上的一動(dòng)點(diǎn),過點(diǎn)P作PQ⊥PO交x軸于點(diǎn)Q,是否存在點(diǎn)P使得△OPQ與△CDF相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年云南省楚雄州雙柏縣中考數(shù)學(xué)模擬試卷(妥甸中學(xué))(解析版) 題型:填空題

          (2009•莆田)已知⊙O1和⊙O2的半徑分別是一元二次方程(x-1)(x-2)=0的兩根,且O1O2=2,則⊙O1和⊙O2的位置關(guān)系是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省揚(yáng)州市梅嶺中學(xué)九年級(jí)(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          (2009•莆田)已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點(diǎn)D,過點(diǎn)D作弦DE⊥AB,垂足為點(diǎn)F,連接BD、BE.
          (1)仔細(xì)觀察圖形并寫出四個(gè)不同的正確結(jié)論:①______,②______,③______,④______(不添加其它字母和輔助線,不必證明);
          (2)∠A=30°,CD=,求⊙O的半徑r.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案