日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,AD、CF分別是∠BAC、∠ACB的角平分線,且AD、CF交于點(diǎn)I,IE⊥BC與E,下列結(jié)論:①∠BIE=∠CID;②S△ABCIE(AB+BC+AC);③BE=(AB+BC-AC);④AC=AF+DC.其中正確的結(jié)論是( )

          A. ①②③ B. ①②④ C. ②③④ D. ①②③④

          【答案】A

          【解析】

          ①由IABC三條角平分線的交點(diǎn),IEBCE,得到∠ABI=IBD,由于∠CID+ABI=90°,即∠CIE+DIE+IBD=90°,于是得到∠BIE=CID;即①成立;②由IABC三內(nèi)角平分線的交點(diǎn),得到點(diǎn)IABC三邊的距離相等,根據(jù)三角形的面積即可得到即②成立;③如圖過(guò)IIHABH,IGACG,有IABC三內(nèi)角平分線的交點(diǎn),得到IE=IH=IG,通過(guò)RtAHT≌△RtAGI,得到AH=AG,同理BE=BF,CE=CG,于是得到即③成立;④由③證得IH=IE,FHI=IED=90°,于是得到IHFDEI不一定全等,即④錯(cuò)誤.

          ①∵IABC角平分線的交點(diǎn),IEBCE,

          ∴∠ABI=IBD,

          ∵∠DIC=DAC+ACI=BAC+ACB),ABI=ABC,

          ∴∠CID+ABI=90°,

          IEBCE,

          ∴∠BIE+IBE=90°,

          ∵∠ABI=IBE,

          ∴∠BIE=CID;

          即①成立;

          ②∵IABC三內(nèi)角平分線的交點(diǎn),

          ∴點(diǎn)IABC三邊的距離相等,

          SABC=SABI+SBCI+SACI=ABIE+BCIE+ACIE=IE(AB+BC+AC),即②成立;

          ③如圖過(guò)IIHABH,IGACG,

          IABC三內(nèi)角平分線的交點(diǎn),

          IE=IH=IG,

          RtAHTRtAGI中,

          RtAHT≌△RtAGI,

          AH=AG

          同理BE=BH,CE=CG,

          BE+BH=AB+BC-AH-CE=AB+BC-AC,

          BE=(AB+BC-AC);即③成立;

          ④由③證得IH=IE,

          ∵∠FHI=IED=90°,

          ∴△IHFDEI不一定全等,

          HF不一定等于DE,

          AC=AG+CG=AH+CE≠AF+CD,即④錯(cuò)誤.

          故選A.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為解決中小學(xué)大班額問(wèn)題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬(wàn)元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬(wàn)元.

          (1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬(wàn)元?

          (2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過(guò)11800萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬(wàn)元和500萬(wàn)元.請(qǐng)問(wèn)共有哪幾種改擴(kuò)建方案?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知PAPBPC2,∠BPC120°,PABC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長(zhǎng)為( 。

          A. 2B. 2C. +1D. 1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為進(jìn)一步推廣“陽(yáng)光體育”大課間活動(dòng),高新中學(xué)對(duì)已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D排球四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:

          (1)請(qǐng)計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

          (2)隨機(jī)抽取了3名喜歡“跑步”的學(xué)生,其中有2生,1生,現(xiàn)從這3名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到一男生一女生的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于一次函數(shù)y=-2x+4,下列結(jié)論錯(cuò)誤的是(  )

          A. 函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)是

          B. 函數(shù)值隨自變量的增大而減小

          C. 函數(shù)的圖象不經(jīng)過(guò)第三象限

          D. 函數(shù)的圖象向下平移4個(gè)單位長(zhǎng)度得的圖象

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC中,∠C=90°,AC=BC=4,將△ABC翻折,使得點(diǎn)A落在BC的中點(diǎn)A'處,折痕分別交邊AB、AC于點(diǎn)D、點(diǎn)E,那么AD:AE的值為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:A=,B=

          (1)求3A+6B;

          (2)若3A+6B的值與a的取值無(wú)關(guān),求b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AD平分∠EACDEABE,DFACFBDCD,

          1)求證:BEFC;

          2)已知AC20,BE4,求AB的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一次函數(shù)與反比例函數(shù)的圖像交于A(1,12)和B(6,2)兩點(diǎn)。點(diǎn)P是線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A和B重合),過(guò)P點(diǎn)分別作x、y軸的垂線PC、PD交反比例函數(shù)圖像于點(diǎn)M、N,則四邊形PMON面積的最大值是(  。

          A. B. C. 6 D. 12

          查看答案和解析>>

          同步練習(xí)冊(cè)答案