日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 怎樣探索三角形全等的條件
          如圖,已知AC與BD相交于點(diǎn)O,AD=BC,如果要得到△ACB≌△BDA,還需要補(bǔ)充一個條件?請你至少寫出3個不同的答案,并寫出每種答案中三角形全等的依據(jù).
          分析:添加條件AC=BD可利用SSS定理證明△ACB≌△BDA;添加條件∠DAB=∠CBA可利用SAS定理證明△ACB≌△BDA;添加條件∠D=∠C,先證明△ADO≌△BCO,再證明△ACB≌△BDA.
          解答:解:添加條件AC=BD,
          在△ACB和△BDA中,
          AD=BC
          AB=AB
          AC=DB
          ,
          ∴△ACB≌△BDA(SSS);
          添加條件∠DAB=∠CBA,
          在△ACB和△BDA中,
          AD=BC
          ∠DAB=∠CBA
          AB=BA
          ,
          ∴△ACB≌△BDA(SAS).
          添加條件:∠C=∠D,
          在△AOD和△BOC中,
          ∠AOD=∠BOC
          ∠D=∠C
          AD=BC

          ∴△AOD≌△BOC(AAS),
          ∴AO=BO,∠DAO=∠CBO,
          ∴∠OAB=∠OBA,
          ∴∠DAB=∠CBA,
          在△DAB和△CBA中,
          ∠D=∠C
          DA=CB
          ∠DAB=∠CBA
          ,
          ∴△DAB≌△CBA(ASA).
          點(diǎn)評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
          注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          25、如圖,一個圓形街心花園,有三個出口A、B、C,每兩個出口之間有一條長60米的道路,組成正三角形ABC,在中心O處有一個亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個全等的多邊形,以備種植不同的花草,
          (1)請你按以上要求設(shè)計(jì)兩種不同的方案.將你的設(shè)計(jì)方案分別畫在圖(a)、圖(b)上,并附簡單的說明;
          (2)要使三條小道把三角形分成三個全等的等腰梯形,應(yīng)怎樣設(shè)計(jì)?把方案畫在圖(c)上,并簡單說明畫法(不需證明);
          (3)請你探究出一種一般方法,使得D不論在什么位置,都能準(zhǔn)確找到另外兩個出口E、F的位置,請寫明這個畫法.用圖(d)表示出來.
          (4)你在上圖中探索出的一般方法是否適用于正方形?請結(jié)合圖(e)予以說明;這種方法可以推廣到正n邊形嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          小明和小亮在學(xué)習(xí)探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?
          (1)請你幫他們解答,并說明理由.
          (2)細(xì)心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點(diǎn)E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)
          (3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點(diǎn)P,也有第2題類似的結(jié)論.請你幫他畫出圖形,并寫出結(jié)論,不要求說明理由.(如圖3)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          小明和小亮在學(xué)習(xí)探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?
          (1)請你幫他們解答,并說明理由.
          (2)細(xì)心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點(diǎn)E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)
          (3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點(diǎn)P,也有第2題類似的結(jié)論.請你幫他畫出圖形,并寫出結(jié)論,不要求說明理由.(如圖3)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年廣東省佛山市南海區(qū)九江鎮(zhèn)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          如圖,一個圓形街心花園,有三個出口A、B、C,每兩個出口之間有一條長60米的道路,組成正三角形ABC,在中心O處有一個亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個全等的多邊形,以備種植不同的花草,
          (1)請你按以上要求設(shè)計(jì)兩種不同的方案.將你的設(shè)計(jì)方案分別畫在圖(a)、圖(b)上,并附簡單的說明;
          (2)要使三條小道把三角形分成三個全等的等腰梯形,應(yīng)怎樣設(shè)計(jì)?把方案畫在圖(c)上,并簡單說明畫法(不需證明);
          (3)請你探究出一種一般方法,使得D不論在什么位置,都能準(zhǔn)確找到另外兩個出口E、F的位置,請寫明這個畫法.用圖(d)表示出來.
          (4)你在上圖中探索出的一般方法是否適用于正方形?請結(jié)合圖(e)予以說明;這種方法可以推廣到正n邊形嗎?

          查看答案和解析>>

          同步練習(xí)冊答案