日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,用細(xì)線懸掛一個(gè)小球,小球在豎直平面內(nèi)的A、C兩點(diǎn)間來(lái)回?cái)[動(dòng),A點(diǎn)與地面距離AN=14cm,小球在最低點(diǎn)B時(shí),與地面距離BM=5cm,AOB=66°,求細(xì)線OB的長(zhǎng)度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

          【答案】15cm

          【解析】

          試題設(shè)細(xì)線OB的長(zhǎng)度為xcm,作ADOBD,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在RtAOD中,由三角函數(shù)得出方程,解方程即可.

          試題解析:設(shè)細(xì)線OB的長(zhǎng)度為xcm,作ADOBD,如圖所示:

          ∴∠ADM=90°,

          ∵∠ANM=DMN=90°,

          ∴四邊形ANMD是矩形,

          AN=DM=14cm,

          DB=14﹣5=9cm,

          OD=x﹣9,

          RtAOD中,cosAOD=,

          cos66°==0.40,

          解得:x=15,

          OB=15cm.

          型】解答
          結(jié)束】
          20

          【題目】已知:如圖,在半徑為中,、是兩條直徑,的中點(diǎn),的延長(zhǎng)線交于點(diǎn),且,連接。.

          1)求證:;

          2)求的長(zhǎng).

          【答案】1)證明見解析; 2EM=4.

          【解析】

          1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對(duì)應(yīng)角相等,即可得△AMC∽△EMB

          2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長(zhǎng)度,根據(jù)已知條件推出AM、BM的長(zhǎng)度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長(zhǎng)度.

          1)連接AC、EB

          ∵∠A=BEC,∠B=ACM,∴△AMC∽△EMB,∴,∴AMBM=EMCM

          2)∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2

          DE,CD=8,且EC為正數(shù),∴EC=7

          MOB的中點(diǎn),∴BM=2,AM=6

          AMBM=EMCM=EMECEM=EM7EM=12,且EMMC,∴EM=4

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在RtABC中,B=90°,AC=60,AB=30。點(diǎn)D是AC上的動(dòng)點(diǎn),過(guò)D作DFBC于F,再過(guò)F作FE//AC,交AB于E。設(shè)CD=x,DF=y.

          (1)求y與x的函數(shù)關(guān)系式;

          (2)當(dāng)四邊形AEFD為菱形時(shí),求x的值;

          (3)當(dāng)FED是直角三角形時(shí),求x的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,已知是等腰直角三角形,,點(diǎn)DBC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DGDE上,連接AEBG

          試猜想線段BGAE的數(shù)量關(guān)系是______;

          將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn),

          判斷中的結(jié)論是否仍然成立?請(qǐng)利用圖2證明你的結(jié)論;

          ,當(dāng)AE取最大值時(shí),求AF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).

          1)如圖1,當(dāng)點(diǎn)E在邊DC上自DC移動(dòng),同時(shí)點(diǎn)F在邊CB上自CB移動(dòng)時(shí),連接AEDF交于點(diǎn)P,請(qǐng)你寫出AEDF的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理;

          2)如圖2,當(dāng)E,F分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答,不需證明);連接AC,求ACE為等腰三角形時(shí)CECD的值;

          3)如圖3,當(dāng)E,F分別在直線DCCB上移動(dòng)時(shí),連接AEDF交于點(diǎn)P,由于點(diǎn)E,F的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.AD=2,試求出線段CP的最大值.

          1 2 3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某旅行社推出一條成本價(jià)為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報(bào)價(jià)(元/人)之間的關(guān)系為,已知:旅游主管部門規(guī)定該旅游線路報(bào)價(jià)在800元/人~1200元/人之間.

          (1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報(bào)價(jià)的取值范圍;

          (2)求經(jīng)營(yíng)這條旅游線路每月所需要的最低成本;

          (3)當(dāng)這條旅游線路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),頂點(diǎn)為C

          當(dāng)A、B兩點(diǎn)的坐標(biāo)分別為,時(shí),求a、b滿足的關(guān)系式.

          若該函數(shù)圖象的對(duì)稱軸是直線,且為等腰直角三角形.

          ①求該二次函數(shù)的解析式用只含a的式子表示

          ②在范圍內(nèi)任取三個(gè)自變量、,所對(duì)應(yīng)的三個(gè)函數(shù)值分別為、,若以、為長(zhǎng)度的三條線段能圍成三角形,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在足夠大的空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

          (1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長(zhǎng);

          (2)求矩形菜園ABCD面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,兩棵樹的高度分別為AB=6 m,CD=8 m,兩樹的根部間的距離AC=4 m,小強(qiáng)沿著正對(duì)這兩棵樹的方向從左向右前進(jìn),如果小強(qiáng)的眼睛與地面的距離為1.6 m,當(dāng)小強(qiáng)與樹AB的距離小于多少時(shí),就不能看到樹CD的樹頂D?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一次函數(shù)ykx+bk0)與反比例函數(shù)ya0)的圖象在第一象限交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(m,4),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過(guò)BBDy軸,垂足為D,交OAC.若OCCA,

          1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

          2)求△AOB的面積;

          3)在直線BD上是否存在一點(diǎn)E,使得△AOE是直角三角形,求出所有可能的E點(diǎn)坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案