日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是(

          A.函數(shù)有最小值
          B.當(dāng)﹣1<x<3時(shí),y>0
          C.當(dāng)x<1時(shí),y隨x的增大而減小
          D.對(duì)稱軸是直線x=1

          【答案】B
          【解析】解:A、∵拋物線開口向上,
          ∴函數(shù)有最小值,故本選項(xiàng)正確;
          B、當(dāng)﹣1<x<3時(shí),y<0,故本選項(xiàng)錯(cuò)誤;
          C、∵拋物線開口向上,
          ∴當(dāng)x<1時(shí),y隨x的增大而減小,故本選項(xiàng)正確;
          D、∵拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣1,0)、(3,0),
          ∴拋物線的對(duì)稱軸為直線x=1,故本選項(xiàng)正確.
          故選B.
          【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,

          (1)如果∠AOB=90°,BOC=38°,求∠DOE的度數(shù);

          (2)如果∠AOB=α,BOC=β(α、β均為銳角,αβ),其他條件不變,求∠DOE;

          (3)從(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律,請(qǐng)寫出來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公司擬為貧困山區(qū)建一所希望小學(xué),甲、乙兩個(gè)工程隊(duì)提交了投標(biāo)方案,若獨(dú)立完成該項(xiàng)目,則甲工程隊(duì)所用時(shí)間是乙工程隊(duì)的1.5倍;若甲、乙兩隊(duì)合作完成該項(xiàng)目,則共需72天.

          (1)甲、乙兩隊(duì)單獨(dú)完成建校工程各需多少天?

          (2)若由甲工程隊(duì)單獨(dú)施工,平均每天的費(fèi)用為0.8萬元,為了縮短工期,該公司選擇了乙工程隊(duì),但要求其施工的總費(fèi)用不能超過甲工程隊(duì),求乙工程隊(duì)平均每天的施工費(fèi)用最多為多少萬元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AD∥BC,AF平分∠BAD交BC于點(diǎn)F,BE平分∠ABC交AD于點(diǎn)E.求證:

          (1)△ABF是等腰三角形;
          (2)四邊形ABFE是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC是邊長(zhǎng)為4的等邊三角形,BC在x軸上,點(diǎn)D為BC的中點(diǎn),點(diǎn)A在第一象限內(nèi),AB與y軸的正半軸交與點(diǎn)E,已知點(diǎn)B(﹣1,0).
          (1)點(diǎn)A的坐標(biāo): , 點(diǎn)E的坐標(biāo):;
          (2)若二次函數(shù)y=﹣ x2+bx+c過點(diǎn)A、E,求此二次函數(shù)的解析式;
          (3)P是AC上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A、C不重合)連結(jié)PB、PD,設(shè)l是△PBD的周長(zhǎng),當(dāng)l取最小值時(shí),求點(diǎn)P的坐標(biāo)及l(fā)的最小值并判斷此時(shí)點(diǎn)P是否在(2)中所求的拋物線上,請(qǐng)充分說明你的判斷理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解方程

          1;

          2

          3;

          4.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長(zhǎng)為2 的正方形ABCD中,點(diǎn)E為AD邊的中點(diǎn),將△ABE沿BE翻折,使點(diǎn)A落在點(diǎn)A′處,作射線EA′,交BC的延長(zhǎng)線于點(diǎn)F,則CF=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點(diǎn)A(﹣1,0)、B(3,0)、點(diǎn)C三點(diǎn).

          (1)試求拋物線的解析式;
          (2)點(diǎn)D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對(duì)稱軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;
          (3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設(shè)平移的時(shí)間為t秒,試求S與t之間的函數(shù)關(guān)系式?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】麒麟?yún)^(qū)第七中學(xué)現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計(jì)劃在空地上種草皮,經(jīng)測(cè)量,∠B=90°,AB=3mBC=4m,CD=13m,AD=12m

          1)求出空地ABCD的面積?

          2)若每種植1平方米草皮需要300元,問總共需投入多少元?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案