日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 根據(jù)條件求值:
          ①設(shè)a=2-,求a2+-2的值.
          ②設(shè)a2+b2-4a-2b+5=0,求的值.
          ③已知:+=+,=-,求a+b的值.
          ④已知-=2,求+的值.
          【答案】分析:①中,顯然運(yùn)用完全平方公式,再代入計(jì)算;
          ②中,首先由配方法確定a和b的值,再代入計(jì)算;
          ③中,注意運(yùn)用完全平方公式解決.a(chǎn)+b=(+2-2;
          ④中,注意運(yùn)用平方差公式.
          解答:解:①∵a=2-,∴a2+-2=(a-2=(2--2=(2--2-2=12;
          ②∵a2+b2-4a-2b+5=0,
          ∴(a-2)2+(b-1)2=0
          ∴a=2,b=1,
          ∴原式==
          ③∵+=+,=-
          ∴a+b=(+2-2=(+2-2+2=5+2;
          ④∵(+)(-)=25-x2-15+x2=10,
          又知-=2,
          +=10÷2=5.
          點(diǎn)評:此題中,要求對完全平方公式和平方差公式的變形非常熟悉.同時注意二次根式的一些性質(zhì):當(dāng)a≥0時,a=
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀下列范例,按要求解答問題.
          例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+
          3
          2
          =0,求a、b、c的值.
          解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
          3
          2
          =0.②
          將①代入②,整理得4c2+2c-2ab+
          5
          2
          =0.∴ab=2c2+c+
          5
          4

          由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+
          5
          4
          =0④的兩個實(shí)數(shù)根.
          ∴△=(1-2c)2-4(2c2+c+
          5
          4
          ≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
          將c=-1代入④,得t2-3t+
          9
          4
          =0.∴t1=t2=
          3
          2
          ,即a=b=
          3
          2
          .∴a=b,c=-1.
          解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=
          1-2c
          2
          +t,b=
          1-2c
          2
          -t.①
          ∵a2+b2+6c+
          3
          2
          =0,∴(a+b)2-2ab+6c+
          3
          2
          =0.②
          將①代入②,得(1-2c)2-2(
          1-2c
          2
          +t)(
          1-2c
          2
          -t)
          +6c+
          3
          2
          =0.
          整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
          將t、c的值同時代入①,得a=
          3
          2
          ,b=
          3
          2
          .a(chǎn)=b=
          3
          2
          ,c=-1.
          以上解法1是構(gòu)造一元二次方程解決問題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個實(shí)數(shù)根,然后利用判別式求解.
          以上解法2是采用均值換元解決問題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=
          m
          2
          +t,y=
          m
          2
          -t.一些問題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問題順利解決.
          下面給出兩個問題,解答其中任意一題:
          (1)用另一種方法解答范例中的問題.
          (2)選用范例中的一種方法解答下列問題:
          已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          根據(jù)條件求值:
          ①設(shè)a=2-
          3
          ,求a2+
          1
          a2
          -2的值.
          ②設(shè)a2+b2-4a-2b+5=0,求
          a
          +
          b
          3
          a
          -2
          b
          的值.
          ③已知:
          a
          +
          b
          =
          3
          +
          2
          ab
          =
          6
          -
          3
          ,求a+b的值.
          ④已知
          25-x2
          -
          15-x2
          =2,求
          25-x2
          +
          15-x2
          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          根據(jù)條件求值:
          ①設(shè)a=2-數(shù)學(xué)公式,求a2+數(shù)學(xué)公式-2的值.
          ②設(shè)a2+b2-4a-2b+5=0,求數(shù)學(xué)公式的值.
          ③已知:數(shù)學(xué)公式+數(shù)學(xué)公式=數(shù)學(xué)公式+數(shù)學(xué)公式,數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式,求a+b的值.
          ④已知數(shù)學(xué)公式-數(shù)學(xué)公式=2,求數(shù)學(xué)公式+數(shù)學(xué)公式的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          根據(jù)條件求值:
          ①設(shè)a=2-
          3
          ,求a2+
          1
          a2
          -2的值.
          ②設(shè)a2+b2-4a-2b+5=0,求
          a
          +
          b
          3
          a
          -2
          b
          的值.
          ③已知:
          a
          +
          b
          =
          3
          +
          2
          ,
          ab
          =
          6
          -
          3
          ,求a+b的值.
          ④已知
          25-x2
          -
          15-x2
          =2,求
          25-x2
          +
          15-x2
          的值.

          查看答案和解析>>

          同步練習(xí)冊答案