日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線的頂點(diǎn)為D,與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,且OB=2OC=3.
          (1)求a,b的值;
          (2)將45°角的頂點(diǎn)P在線段OB上滑動(dòng)(不與點(diǎn)B重合),該角的一邊過點(diǎn)D,另一邊與BD交于點(diǎn)Q,設(shè)P(x,0),y2=DQ,試求出y2關(guān)于x的函數(shù)關(guān)系式;
          (3)在同一平面直角坐標(biāo)系中,兩條直線x=m,x=m+分別與拋物線y1交于點(diǎn)E,G,與y2的函數(shù)圖象交于點(diǎn)F,H.問點(diǎn)E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請(qǐng)說明理由.

          【答案】分析:(1)由已知,OB=2,OC=3可得,拋物線y1=ax2-2ax+b經(jīng)過B(3,0),C(0,)兩點(diǎn),利用待定系數(shù)法求得二次函數(shù)解析式中的未知數(shù)的值即可確定其解析式;
          (2)作DN⊥AB,垂足為N.首先根據(jù)拋物線的解析式求得D、N、A、B的坐標(biāo)然后轉(zhuǎn)化為線段的長利用勾股定理得到有關(guān)x的關(guān)系式即可確定y2的解析式;
          (3)假設(shè)E、F、H、G圍成四邊形的面積能為,從假設(shè)出發(fā)求得m的值就說明存在,否則就不存在.
          解答:解:(1)∵OB=2,OC=
          ∴拋物線y1=ax2-2ax+b經(jīng)過B(3,0),C(0,)兩點(diǎn),
          ,

          ∴拋物線的解析式為y1=-x2+x+

          (2)作DN⊥AB,垂足為N.(如下圖1)
          由y1=-x2+x+易得D(1,2),N(1,0),A(-1,0),B(3,0),
          ∴AB=4,DN=BN=2,DB=2
          ∠DBN=45°.根據(jù)勾股定理有BD 2-BN 2=PD 2-PN 2
          ∴(22-22=PD2-(1-x)2
          又∵∠DPQ=45°=∠DBP,
          ∴△PQD∽△BPD
          ∴PD2=DQ×DB=y2×2②.
          由①②得y2=x2-x+
          ∵0≤x<3,
          ∴y2與x的函數(shù)關(guān)系式為y2=x2-x+=(x-1)2+2(0≤x<3).
          (自變量取值范圍沒寫,不扣分)

          (3)假設(shè)E、F、H、G圍成四邊形的面積能為  (如圖2)
          ∵點(diǎn)E、G是拋物線y1=-x2+x+=- (x-1)2+2(分別與直線x=m,x=m+的交點(diǎn)
          ∴點(diǎn)E、G坐標(biāo)為 E(m,-(m-1)2+2),G(m+,-(m-1)2+2).
          同理,點(diǎn)F、H坐標(biāo) 為F(m,(m-1)2+2),H(m+,-(m-2+2).
          ∴EF=-(m-1)2+2-[-(m-1)2+2]=(m-1)2
          GH=(m-2+2-[-(m-2+2]=(m-2
          ∵四邊形EFHG是平行四邊形或梯形,
          ∴S=[(m-1)2+(m-2=
          化簡(jiǎn)得16m2-24m+5=0
          解得,m=(都在0≤x≤3內(nèi))
          所以,當(dāng),m=時(shí),E、F、H、G圍成四邊形的面積為
          點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用,此類題目往往是中考題的壓軸題,特別是存在型問題更是最近幾年中考題的一個(gè)熱點(diǎn)問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,拋物線的頂點(diǎn)為P(1,0),一條直線與拋物線相交于A(2,1),B(-
          12
          ,m
          )兩精英家教網(wǎng)點(diǎn).
          (1)求拋物線和直線AB的解析式;
          (2)若M為線段AB上的動(dòng)點(diǎn),過M作MN∥y軸,交拋物線于點(diǎn)N,連接NP、AP,試探究四邊形MNPA能否為梯形?若能,求出此點(diǎn)M的坐標(biāo);若不能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          21、如圖,拋物線的頂點(diǎn)為A(1,-4),且過點(diǎn)B(3,0).
          (1)求該拋物線的解析式;
          (2)將該拋物線向右平移幾個(gè)單位,可使平移后的拋物線經(jīng)過原點(diǎn)?并直接寫出平移后拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•河南)如圖,拋物線的頂點(diǎn)為P(-2,2),與y軸交于點(diǎn)A(0,3).若平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn)P′(2,-2),點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為
          12
          12

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•峨眉山市二模)已知,如圖,拋物線的頂點(diǎn)為C(1,-2),直線y=kx+m與拋物線交于A、B兩點(diǎn),其中OA=3,B點(diǎn)在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過點(diǎn)P且垂直于x軸的直線與這條拋物線交于點(diǎn)E.
          (1)求直線AB的解析式;
          (2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求點(diǎn)E坐標(biāo)(用含x的代數(shù)式表示);
          (3)點(diǎn)D是直線AB與這條拋物線對(duì)稱軸的交點(diǎn),是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•鄂爾多斯)如圖,拋物線的頂點(diǎn)為C(-1,-1),且經(jīng)過點(diǎn)A、點(diǎn)B和坐標(biāo)原點(diǎn)O,點(diǎn)B的橫坐標(biāo)為-3.
          (1)求拋物線的解析式;
          (2)若點(diǎn)D為拋物線上的一點(diǎn),點(diǎn)E為對(duì)稱軸上的一點(diǎn),且以點(diǎn)A、O、D、E為
          頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);
          (3)若點(diǎn)P是拋物線第一象限上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案