日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面內(nèi)畫了若干個點,任意三點都不在同一直線上,連接任意兩點共得到直線45條.
          (1)問該平面上共畫了多少個點?
          (2)解決該問題是否得到了一個一元二次方程?如果不是,指出得到的方程的名稱;如果是,求出這個方程的兩根之和、兩根之積,并求出兩根的倒數(shù)和.
          分析:(1)根據(jù)過兩點的直線有1條,過不在同一直線上的三點的直線有3條,過任何三點都不在一條直線上四點的直線有6條,按此規(guī)律,由特殊到一般,總結出公式:平面內(nèi)任意三個點都不在同一直線上,平面內(nèi)有n個點,一共可以畫直線的條數(shù)為
          n(n-1)
          2
          ;
          (2)根據(jù)上題得到的方程進行判定即可.
          解答:解:(1)設平面內(nèi)有n個點,一共可以畫(n-1)+…+4+3+2+1=
          n(n-1)
          2
          =45,
          整理得:n2-n-90=0
          解得:n1=10或n2=-9(舍去),
          答:該平面上共畫了10個點;
          (2)問題中得到了方程:n2-n-90=0
          是有關n的一元二次方程,兩根之和為1,兩根之積為-90,
          1
          n1
          +
          1
          n2
          =
          n1+n2
          n1n2
          =-
          1
          90
          ;
          點評:本題考查了一元二次方程的應用,解題的關鍵是總結出平面內(nèi)n個點連接任意兩點得到的直線的條數(shù).
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:解答題

          在平面內(nèi)畫了若干個點,任意三點都不在同一直線上,連接任意兩點共得到直線45條.
          (1)問該平面上共畫了多少個點?
          (2)解決該問題是否得到了一個一元二次方程?如果不是,指出得到的方程的名稱;如果是,求出這個方程的兩根之和、兩根之積,并求出兩根的倒數(shù)和.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          在平面內(nèi)畫了若干個點,任意三點都不在同一直線上,連接任意兩點共得到直線45條.
          (1)問該平面上共畫了多少個點?
          (2)解決該問題是否得到了一個一元二次方程?如果不是,指出得到的方程的名稱;如果是,求出這個方程的兩根之和、兩根之積,并求出兩根的倒數(shù)和.

          查看答案和解析>>

          同步練習冊答案