日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四邊形ABCD中,ADBC,B=90°,BC=6,AD=3,AB=,點E,F(xiàn)同時從B點出發(fā),沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點移動距離為x(0<x<6).

          (1)DCB=   度,當(dāng)點G在四邊形ABCD的邊上時,x=   ;

          (2)在點E,F(xiàn)的移動過程中,點G始終在BDBD的延長線上運動,求點G在線段BD的中點時x的值;

          (3)當(dāng)2<x<6時,求△EFG與四邊形ABCD重疊部分面積yx之間的函數(shù)關(guān)系式,當(dāng)x取何值時,y有最大值?并求出y的最大值.

          【答案】(1) 30;2;(2)x=1;(3)當(dāng)x=時,y最大=

          【解析】

          (1)如圖1中,作DHBCH,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當(dāng)?shù)冗吶切?/span>EGF的高= 時,點GAD上,此時x=2;

          (2)根據(jù)勾股定理求出的長度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;
          (3)圖2,圖3三種情形解決問題.①當(dāng)2<x<3時,如圖2中,點E、F在線段BC上,EFG與四邊形ABCD重疊部分為四邊形EFNM;②當(dāng)3≤x<6時,如圖3中,點E在線段BC上,點F在射線BC上,重疊部分是ECP;

          (1)作DHBCH,則四邊形ABHD是矩形.

          AD=BH=3,BC=6,

          CH=BC﹣BH=3,

          RtDHC中,CH=3,

          當(dāng)?shù)冗吶切?/span>EGF的高等于時,點GAD上,此時x=2,DCB=30°,

          故答案為:30,2,

          (2)如圖

          ADBC

          ∴∠A=180°﹣ABC=180°﹣90°=90°

          RtABD

          ∴∠ADB=30°

          GBD的中點

          ADBC

          ∴∠ADB=DBC=30°

          ∵△GEF是等邊三角形,

          ∴∠GFE=60°

          ∴∠BGF=90°

          RtBGF,

          2x=2x=1;

          (3)分兩種情況:

          當(dāng)2<x<3,如圖2

          E、點F在線段BCGEF與四邊形ABCD重疊部分為四邊形EFNM

          ∵∠FNC=GFE﹣DCB=60°﹣30°=30°

          ∴∠FNC=DCB

          FN=FC=6﹣2x

          GN=x﹣(6﹣2x)=3x﹣6

          ∵∠FNC=GNM=30°,G=60°

          ∴∠GMN=90°

          RtGNM,

          ∴當(dāng)時,最大

          當(dāng)3≤x<6時,如圖3,

          E在線段BC上,點F在線段BC的延長線上,GEF與四邊形ABCD重疊部分為ECP

          ∵∠PCE=30°,PEC=60°

          ∴∠EPC=90°

          RtEPCEC=6﹣x,

          對稱軸為

          當(dāng)x<6時,yx的增大而減小

          ∴當(dāng)x=3時,最大

          綜上所述:當(dāng)時,最大

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】近期豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注.當(dāng)市場豬肉的平均價格每千克達(dá)到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.

          從今年年初至日,豬肉價格不斷走高,日比年初價格上漲了.某市民在今年日購買千克豬肉至少要花元錢,那么今年年初豬肉的最低價格為每千克多少元?

          (2)日,豬肉價格為每千克日,某市決定投入儲備豬肉并規(guī)定其銷售價在每千克元的基礎(chǔ)上下調(diào)出售.某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為每千克元的情況下,該天的兩種豬肉總銷量比日增加了,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比日提高了,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線經(jīng)過正方形的頂點,先分別過此正方形的頂點、于點于點.然后再以正方形對角線的交點為端點,引兩條相互垂直的射線分別與,交于,兩點.若,則線段長度的最小值是___

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】低碳生活作為一種健康、環(huán)保、安全的生活方式,受到越來越多人的關(guān)注.某公司生產(chǎn)的健身自行車在市場上受到普遍歡迎,在國內(nèi)市場和國外市場暢銷,生產(chǎn)的產(chǎn)品可以全部售出,在國內(nèi)市場每輛的利潤(元)與銷量(萬輛)的關(guān)系如圖所示;在國外市場每輛的利潤(元)與銷量(萬量)的關(guān)系為:

          求國內(nèi)市場的銷售總利潤(萬元)關(guān)于銷售量(萬輛)的函數(shù)關(guān)系式,并指出自變量的取值范圍.

          該公司的年生產(chǎn)能力為萬輛,請幫助該公司確定國內(nèi)、國外市場的銷量各為多少時,公司的年利潤最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

          1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

          2)若學(xué)校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3),過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=

          (1)求反比例函數(shù)y=和直線y=kx+b的解析式;

          (2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;

          (3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA于點M,求∠BMC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時出發(fā),甲車以60千米/時的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達(dá)目的地后停止.甲、乙兩車相距的路程(千米)與甲車的行駛時間(時)之間的函數(shù)關(guān)系如圖所示.

          1)乙車的速度為   千米/時,   ,   

          2)求甲、乙兩車相遇后之間的函數(shù)關(guān)系式.

          3)當(dāng)甲車到達(dá)距70千米處時,求甲、乙兩車之間的路程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知菱形,、分別是的中點,連接、

          求證:四邊形是矩形;

          ,求菱形的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,點軸上,點坐標(biāo)為。

          1)求點軸的距離;

          2)連接,當(dāng)時,求點的坐標(biāo);

          3)在(2)的條件下,猜想線段和線段的數(shù)量關(guān)系,并說明理由。

          查看答案和解析>>

          同步練習(xí)冊答案