日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:在平面直角坐標(biāo)系中,等腰直角△ABC頂點(diǎn)A、C分別在y軸、x軸上,且∠ACB=90°,AC=BC.
          (1)如圖1,當(dāng)A(0,-2),C(1,0),點(diǎn)B在第四象限時(shí),先寫(xiě)出點(diǎn)B的坐標(biāo),并說(shuō)明理由.
          (2)如圖2,當(dāng)點(diǎn)C在x軸正半軸上運(yùn)動(dòng),點(diǎn)A(0,a)在y軸正半軸上運(yùn)動(dòng),點(diǎn)B(m,n)在第四象限時(shí),作BD⊥y軸于點(diǎn)D,試判斷a,m,n之間的關(guān)系,請(qǐng)證明你的結(jié)論.
          分析:(1)過(guò)點(diǎn)B作BD⊥x軸于D,利用同角的余角相等求出∠OAC=∠BCD,然后利用“角角邊”證明△AOC和△CDB全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AO=CD,OC=BD,然后求出OD,再根據(jù)點(diǎn)D在第四象限寫(xiě)出點(diǎn)D的坐標(biāo)即可;
          (2)過(guò)點(diǎn)B作BE⊥x軸于E,利用同角的余角相等求出∠2=∠3,再利用“角角邊”證明△CEB和△AOC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AO=CE,BE=CO,然后代入a、m、n整理即可得解.
          解答:解:(1)點(diǎn)B的坐標(biāo)為(3,-1).
          理由如下:作BD⊥x軸于D,
          ∴∠BOC=90°=∠BDC,
          ∴∠OAC+∠ACO=90°,
          ∵∠ACB=90°,AC=BC,
          ∴∠ACO+∠BCD=90°,
          ∴∠OAC=∠BCD,
          在△AOC和△CDB中,
          ∠OAC=∠BCD
          ∠AOC=∠CDB=90°
          AC=BC
          ,
          ∴△AOC≌△CDB(AAS),
          ∴AO=CD,OC=BD,
          ∵A(0,-2),C(1,0),
          ∴AO=CD=2,OC=BD=1,
          ∴0D=3,
          ∵B在第四象限,
          ∴點(diǎn)B的坐標(biāo)為(3,-1);

          (2)a+m+n=0.
          證明:作BE⊥x軸于E,
          ∴∠BEC=∠AOC=90°,
          ∴∠1+∠2=90°,
          ∵∠ACB=90°,
          ∴∠1+∠3=90°,
          ∴∠2=∠3,
          在△CEB和△AOC中,
          ∠2=∠3
          ∠BEC=∠AOC
          AC=BC
          ,
          ∴△CEB≌△AOC(AAS),
          ∴AO=CE=a,BE=CO,
          ∵BE⊥x軸于E,
          ∴BE∥y軸,
          ∵BD⊥y軸于點(diǎn)D,EO⊥y軸于點(diǎn)O,
          ∴EO=BD=m,
          ∴BE=-n,
          ∴a+m=-n,
          ∴a+m+n=0.
          點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),坐標(biāo)與圖形的性質(zhì),等腰直角三角形的性質(zhì),同角的余角相等的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)xOy中,反比例函數(shù)y=
          k
          x
          的圖象與y=
          3
          x
          的圖象關(guān)于x軸對(duì)稱,又與直線y=ax+2交于點(diǎn)A(m,3).已知點(diǎn)M(-3,y1)、N(l,y2)和Q(3,y3)三點(diǎn)都在反比例函數(shù)y=
          k
          x
          的圖象上. 
          (l)比較y1、y2、y3的大;
          (2)試確定a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系里,如圖,已知直線:y=-x+3
          2
          交y軸于點(diǎn)A,交x軸于點(diǎn)B,三角板OCD如圖1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD繞點(diǎn).順時(shí)針旋轉(zhuǎn)15°,得到△OC1D1(如圖2),這時(shí)OC1交AB于點(diǎn)E,C1D1交AB于點(diǎn)F.
          (1)求∠EFC1的度數(shù);
          (2)求線段AD1的長(zhǎng);
          (3)若把△OC1D1,繞點(diǎn)0順時(shí)針再旋轉(zhuǎn)30.得到△OC2D2,這時(shí)點(diǎn)B在△OC2D2的內(nèi)部、外部、還是邊上?證明你的判斷.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)中,已知點(diǎn)P(3-m,2m-4)在第一象限,則實(shí)數(shù)m的取值范圍是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)中,已知直線y=kx+b與直線y=
          1
          2
          x
          平行,分別交x軸,y軸于A,B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)是-4,以AB為邊在第二象限內(nèi)作矩形ABCD,使AD=
          5

          (1)求矩形ABCD的面積;
          (2)過(guò)點(diǎn)D作DH⊥x軸,垂足為H,試求點(diǎn)D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為
          y=-
          6
          x
          y=-
          6
          x

          查看答案和解析>>

          同步練習(xí)冊(cè)答案