日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合.將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
          如圖②,當(dāng)點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;若旋轉(zhuǎn)到DE⊥AB時,當(dāng)BP=a,CQ=
          92
          a
          時,求PQ(用含a的代數(shù)式表示).
          分析:由△ABC和△DEF是兩個全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性質(zhì),即可得∠BEP=∠EQC,則可證得:△BPE∽△CEQ;根據(jù)相似三角形的對應(yīng)邊成比例,即可求得BE的長,即可得BC的長,繼而求得AQ與AP的長,利用勾股定理即可求得P、Q兩點間的距離.
          解答:解:連接PQ,
          ∵△ABC和△DEF是兩個全等的等腰直角三角形,
          ∴∠B=∠C=∠DEF=45°,
          ∵∠BEQ=∠EQC+∠C,
          即∠BEP+∠DEF=∠EQC+∠C,
          ∴∠BEP+45°=∠EQC+45°,
          ∴∠BEP=∠EQC,
          ∵∠B=∠C=45°,
          ∴△BPE∽△CEQ,
          BP
          CE
          =
          BE
          CQ
          ,
          ∵BP=a,CQ=
          9
          2
          a
          ,BE=CE,
          a
          CE
          =
          CE
          9
          2
          a

          ∴BE=CE=
          3
          2
          2
          a,
          ∴BC=3
          2
          a,
          ∴AB=AC=BC•sin45°=3a,
          ∴AQ=CQ-AC=
          3
          2
          a,PA=AB-BP=2a,
          在Rt△APQ中,PQ=
          AQ2+AP2
          =
          5
          2
          a.
          點評:本題考查了相似三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理.此題難度較大,注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F(xiàn)為線段AD的中點,連CF,
          (1)如圖1,當(dāng)D點在BC上時,BE與CF的數(shù)量關(guān)系是
           
          ,位置關(guān)系是
           
          ,請證明.
          精英家教網(wǎng)
          (2)如圖2,把△DEC繞C點順時針旋轉(zhuǎn)一個銳角,其他條件不變,問(1)中的關(guān)系是否仍然成立?如果成立請證明.如果不成立,請寫出相應(yīng)的正確的結(jié)論并加以證明.
          (3)如圖3,把△DEC繞C點順時針旋轉(zhuǎn)45°,若∠DCF=30°,直接寫出
          BGCG
          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          10、如圖,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,點C在AD上,如果△ABC經(jīng)旋轉(zhuǎn)后能與△ADE重合,那么點
          A
          是旋轉(zhuǎn)中心,旋轉(zhuǎn)的最小度數(shù)為
          45
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,BC=3,CD=1.
          (1)求證:tan∠AEC=
          BCCD
          ;
          (2)請?zhí)骄緽M與DM的數(shù)量關(guān)系,并給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點F,連接BD交 CE于點G,連接BE.下列結(jié)論中:
          ①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
          一定正確的結(jié)論有( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
          (1)求證:△ACE≌△ABD;
          (2)若AC=2,EC=4,DC=2
          2
          .求∠ACD的度數(shù);
          (3)在(2)的條件下,直接寫出DE的長為
          2
          10
          2
          10
          .(只填結(jié)果,不用寫出計算過程)

          查看答案和解析>>

          同步練習(xí)冊答案