日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿BC的方向運動,且DE始終經(jīng)過點A,EFAC交于M點.

          (1)求證:△ABE∽△ECM;

          (2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;

          (3)當線段BE為何值時,線段AM最短,最短是多少

          【答案】(1)證明見解析;(2)能;BE=1(3)BE=3時,AM最短為.

          【解析】

          (1)由AB=AC,根據(jù)等邊對等角可得∠B=∠C,又由△ABC≌△DEF與三角形外角的性質易證得∠CEM=∠BAE,則可證得△ABE∽△ECM;

          (2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AEAM,然后分別從AE=EMAM=EM去分析,注意利用全等三角形與相似三角形的性質求解即可求得答案;

          (3)首先設BE=x由△ABE∽△ECM,根據(jù)相似三角形的對應邊成比例,易得CM=﹣+x=﹣x﹣3)2+,繼而求得AM的值,利用二次函數(shù)的性質,即可求得線段AM的最小值

          1)∵AB=AC,∴∠B=∠C

          ∵△ABC≌△DEF,∴∠AEF=∠B

          又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;

          (2)能

          ∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AEAM;

          AE=EM,則△ABE≌△ECM,∴CE=AB=5,∴BE=BCEC=6﹣5=1;

          AM=EM,則∠MAE=∠MEA

          ∵∠MEA=∠B,∴∠MAE=∠B

          ∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=

          綜上所述BE=1

          (3)設BE=x

          又∵△ABE∽△ECM,∴,,∴CM=﹣+x=﹣x﹣3)2+,∴AM=5﹣CM=x﹣3)2+∴當x=3,AM最短為

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

          1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

          2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖一次函數(shù)y1=-x-2y2=x-4的圖象相交于點A

          1)求點A的坐標;

          2)若一次函數(shù)y1=-x-2y2=x-4的圖象與x軸分別相交于點B、C,求ABC的面積.

          3)結合圖象,直接寫出y1y2x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)y=﹣x2+2x.

          (1)在給定的平面直角坐標系中,畫出這個函數(shù)的圖象;

          (2)根據(jù)圖象,寫出當y<0時,x的取值范圍;

          (3)若將此圖象沿x軸向左平移3個單位,再沿y軸向下平移1個單位,請直接寫出平移后圖象所對應的函數(shù)關系式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結果

          下面有三個推斷:

          ①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47

          ②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;

          ③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45

          其中合理的是

          A. B. C. ①② D. ①③

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知如圖:點(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BCx軸上,E是對角線BD的中點,函數(shù)y=(x>0)的圖象又經(jīng)過A、E兩點,點E的橫坐標為m,解答下列問題:

          (1)k的值;

          (2)求點A的坐標;(用含m代數(shù)式表示)

          (3)當∠ABD=45°時,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知拋物線y=mx2的圖像經(jīng)過點(1,2).

          (1)求出m的值和頂點的坐標,并畫出這條拋物線;

          (2)利用圖像回答:x取什么值時,拋物線在直線y=2的上方

          (3)當-1≤x≤2時,求y的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,把RtABC繞點A逆時針旋轉44°,得到RtABC,點C恰好落在邊AB上,連接BB,則BBC′=__________________

          查看答案和解析>>

          同步練習冊答案