日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 28、如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,動(dòng)點(diǎn)P從A開(kāi)始沿AD邊向D以1cm/秒的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)開(kāi)始沿CB邊以2cm/秒的速度運(yùn)動(dòng),P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,t為何值時(shí)四邊形PQCD為等腰梯形?
          分析:要使四邊形PQCD為等腰梯形,由于AD∥BC,那么只需在移動(dòng)的過(guò)程中滿足PQ=CD即可.
          解答:解:如圖所示.過(guò)點(diǎn)D、Q分別作DE⊥BC于E,QN⊥AD于N.
          ∵∠A=∠B=∠BED=90°,∴ABED為矩形,
          ∴AD=BE,
          在直角梯形ABCD中,
          AD∥BC,∠B=90°,AD=18cm,BC=21cm,
          ∴CE=BC-BE=BC-AD=21-18=3cm.
          ∵四邊形PQCD為等腰梯形,
          ∴PQ=DC,EC=NP=3,
          Q點(diǎn)走過(guò)的路程2t=18-t+2×3,
          解之得,t=8,
          故t=8時(shí)四邊形PQCD為等腰梯形.
          點(diǎn)評(píng):本題考查了等腰梯形的性質(zhì),要求能夠解決一些簡(jiǎn)單的運(yùn)動(dòng)問(wèn)題,熟練掌握矩形以及等腰梯形的性質(zhì)及判定.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
          (1)求證:AE=DF;
          (2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
          (3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
          求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
          求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案