日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,菱形ABCD的頂點(diǎn)A,D在直線l上,BAD=60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時(shí)針旋轉(zhuǎn)αα30°),得到菱形AB′C′D′B′C′交對(duì)角線AC于點(diǎn)M,C′D′交直線l于點(diǎn)N,連接MN,當(dāng)MNB′D′ 時(shí),解答下列問題:

          (1)求證:△AB′MAD′N;

          (2)α的大小.

          【答案】1)見解析;(2α=15°

          【解析】

          1)利用四邊形AB′C′D′是菱形,得到AB′=B′C′=C′D′=AD′,根據(jù)∠B′AD′=B′C′D′=60°,可得△AB′D′,△B′C′D′是等邊三角形,進(jìn)而得到△C′MN是等邊三角形,則有C′M=C′N,MB′=ND′,利用SAS即可證明△AB′M≌△AD′N

          2)由(1)得∠B′AM=D′AN,利用∠CAD=BAD=30°,即可解決問題.

          1)∵四邊形AB′C′D′是菱形,

          AB′=B′C′=C′D′=AD′

          ∵∠B′AD′=B′C′D′=60°,

          ∴△AB′D′,△B′C′D′是等邊三角形,

          MNB′C′

          ∴∠C′MN=C′B′D′=60°,∠CNM=C′D′B′=60°,

          ∴△C′MN是等邊三角形,

          C′M=C′N,

          MB′=ND′,

          ∵∠AB′M=AD′N=120°,AB′=AD′

          ∴△AB′M≌△AD′NSAS),

          2)由△AB′M≌△AD′N得:∠B′AM=D′AN,

          ∵∠CAD=BAD=30°,

          ∴∠D′AN=B′AM=15°,

          α=15°

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)x軸的正半軸交于AC兩點(diǎn)(點(diǎn)A在點(diǎn)C右側(cè)),與y軸正半軸交于點(diǎn)B,連結(jié)BC,將BOC沿直線BC翻折,若點(diǎn)O恰好落在線段AB上,則稱該拋物線為折點(diǎn)拋物線,下列拋物線是折點(diǎn)拋物線的是( )

          A.B.

          C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線x軸交于A-10),B30)兩點(diǎn),與y軸交于點(diǎn)C

          (1)求該拋物線的解析式;

          (2)如圖①,若點(diǎn)D是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m0m3),連接CD,BD,BCAC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;

          (3)若點(diǎn)N為拋物線對(duì)稱軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,CM,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC內(nèi)接于⊙O,直徑DEAB于點(diǎn)F,交BC于點(diǎn) M,DE的延長(zhǎng)線與AC的延長(zhǎng)線交于點(diǎn)N,連接AM

          1)求證:AMBM;

          2)若AMBM,DE8,∠N15°,求BC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y軸交于點(diǎn)A,點(diǎn)B是拋物線上的一點(diǎn),過點(diǎn)B軸于點(diǎn)C,且點(diǎn)C的坐標(biāo)為.

          1)求直線AB的表達(dá)式;

          2)若直線軸,分別與拋物線,直線AB,x軸交于點(diǎn)MN、Q,且點(diǎn)Q位于線段OC之間,求線段MN長(zhǎng)度的最大值;

          3)當(dāng)四邊形MNCB是平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知:拋物線x軸于A,C兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.

          (1)求二次函數(shù)解析式;

          (2)在二次函數(shù)圖象位于x軸上方部分有兩個(gè)動(dòng)點(diǎn)MN,且點(diǎn)N在點(diǎn)M的左側(cè),過M、Nx軸的垂線交x軸于點(diǎn)GH兩點(diǎn),當(dāng)四邊形MNHG為矩形時(shí),求該矩形周長(zhǎng)的最大值;

          (3) 拋物線對(duì)稱軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2017湖北省鄂州市)小明想要測(cè)量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測(cè)得樹頂端E的仰角為30°,他又繼續(xù)走下臺(tái)階到達(dá)C處,測(cè)得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測(cè)得食堂樓頂N的仰角為45°.已知A點(diǎn)離地面的高度AB=2米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.

          (1)求樹DE的高度;

          (2)求食堂MN的高度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】據(jù)新浪網(wǎng)調(diào)查,在第十二屆全國(guó)人大二中全會(huì)后,全國(guó)網(wǎng)民對(duì)政府工作報(bào)告關(guān)注度非常高,大家關(guān)注的網(wǎng)民們關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐、及其它共五類,且關(guān)注五類熱點(diǎn)問題的網(wǎng)民的人數(shù)所占百分比如圖l所示,關(guān)注該五類熱點(diǎn)問題網(wǎng)民的人數(shù)的不完整條形統(tǒng)計(jì)如圖2所示,請(qǐng)根據(jù)圖中信息解答下列問題.

          (1)求出圖l中關(guān)注“反腐”類問題的網(wǎng)民所占百分比x的值,并將圖2中的不完整的條形統(tǒng)計(jì)圖補(bǔ)充完整;

          (2)為了深入探討政府工作報(bào)告,新浪網(wǎng)邀請(qǐng)成都市5名網(wǎng)民代表甲、乙、丙、丁、戊做客新浪訪談,且一次訪談只選2名代表,請(qǐng)你用列表法或畫樹狀圖的方法,求出一次所選代表恰好是甲和乙的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)不透明的布袋中,裝有紅、黃、白三種只有顏色不同的小球,其中紅色小球有6個(gè),黃、白色小球的數(shù)量相同,為估計(jì)袋中黃色小球的數(shù)量,每次將袋中小球攪勻后摸出一個(gè)小球記下顏色放回,再攪勻多次試驗(yàn)發(fā)現(xiàn)摸到紅色的頻率是,則估計(jì)黃色小球的個(gè)數(shù)是(  )

          A.21B.40C.42D.48

          查看答案和解析>>

          同步練習(xí)冊(cè)答案