日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方形中,,的中點.沿對折至,延長于點,連接,則下列結(jié)論正確的有( )個.

          1 2

          3的面積是18 4

          A. 4B. 3C. 2D. 1

          【答案】B

          【解析】

          ①正確,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證RtAFERtADE;在直角ECG中,根據(jù)勾股定理即可求出DE的長;
          ②正確,根據(jù)翻折變換的性質(zhì)和全等得出∠BAG=FAG,∠DAE=FAE,即可求出∠EAG=45°

          ③錯誤,根據(jù) 即可求得結(jié)果;

          ④正確,作FMECBCM,根據(jù)相似三角形的判定和性質(zhì) 可得,求出FMGM,根據(jù)勾股定理求得FC,即可解決問題.

          解:①如圖,連接AE

          AB=AD=AF,∠D=AFE=90°
          RtAFERtADE中,
          ,
          RtAFERtADE,
          EF=DE,
          設(shè)DE=FE=x,則EC=6-x
          GBC中點,BC=6,
          CG=3,
          RtECG中,根據(jù)勾股定理,得:(6-x2+9=x+32,
          解得x=2.故①正確;

          ②∵△ABG沿AG折疊得到AFG,
          ∴△ABG≌△AFG
          ∴∠BAG=FAG
          ∵△ADE≌△AFE
          ∴∠DAE=FAE
          ∵∠BAD=90°,
          ∴∠EAG=EAF+GAF=×90°=45°
          故②正確;

          ∵△ABG沿AG折疊得到AFG,
          ∴△ABG≌△AFG

          AF=AB=6,∠AFG=B=90°,GF=BG=3,

          DE=FE=2,

          EG= GF+ FE=5,

          = ,故③錯誤;

          4)作FMECBCM,則∠FMC=DCM=90°,

          FMEC

          ∴△GMF∽△GCE

          ,

          GBC的中點,BC=AB=6

          GC=3,

          GF=3GE=GF+EF=5,EC=CD-DE=4,

          FM= ,GM= ,

          MC= ,CF= = ,

          ,

          故④正確.

          故選:B

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設(shè)快車離乙地的距離為y1km),慢車離乙地的距離為y2km),慢車行駛時間為xh),兩車之間的距離為skm).y1,y2x的函數(shù)關(guān)系圖象如圖1所示,sx的函數(shù)關(guān)系圖象如圖2所示.則下列判斷:①圖1a3;②當xh時,兩車相遇;③當x時,兩車相距60km;④圖2C點坐標為(3,180);⑤當xhh時,兩車相距200km.其中正確的有_____(請寫出所有正確判斷的序號)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知直線:ykx+3kx軸交于A點,與拋物線y+1交于點BC兩點

          1)若k1,求點B、C(點B在點C的左邊)的坐標;

          2)過BC分別作x軸的垂線,垂足分別為點D、E,求ADAE的值;

          3)將拋物線y+1沿直線ymx+1m1)向右平移t個單位,直線ymx+1y軸于S,交新拋物線于MT,N是新拋物線與y軸的交點,試探究t為何值時,NTx軸?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過CCDAB于點DCDAE于點F,過CCGAEBA的延長線于點G

          1)求證:CG是⊙O的切線.

          2)求證:AFCF

          3)若sinG0.6,CF4,求GA的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】ABC為等邊三角形,

          (1)求證:四邊形是菱形.

          (2)的角平分線,連接,找出圖中所有的等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,中,,的角平分線,點的中點,連接并延長到點,使,連接.

          1)求證:;

          2)判斷并證明四邊形的形狀;

          3)為添加一個條件______,則四邊形是矩形(填空即可,不必說明理由).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C,D兩點.點Px軸上的一個動點.

          (1)求此拋物線的解析式;

          (2)當PA+PB的值最小時,求點P的坐標;

          (3)拋物線上是否存在一點Q(QB不重合),使CDQ的面積等于BCD的面積?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】小聰和小明沿同一條筆直的馬路同時從學校出發(fā)到某圖書館查閱資料,學校與圖書館的路程是4千米,小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到達圖書館,圖中折線O-A-B-C和線段OD分別表示兩人離學校的路程s(千米)與所經(jīng)過的時間t(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:

          1)小聰在圖書館查閱資料的時間為 分鐘,小聰返回學校的速度為 千米/分鐘;

          2)請你求出小明離開學校的路程s(千米)與所經(jīng)過的時間t(分鐘)之間的函數(shù)表達式;

          3)若設(shè)兩人在路上相距不超過0.4千米時稱為可以互相望見,則小聰和小明可以互相望見的時間共有多少分鐘?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,矩形ABCD的頂點A,Bx軸的正半軸上,反比例函數(shù)y=在第一象限內(nèi)的圖象與直線y=x交于點D,且反比例函數(shù)y=BC于點E,AD=3

          1)求D點的坐標及反比例函數(shù)的關(guān)系式;

          2)若矩形的面積是24,請寫出CDE的面積(不需要寫解答過程).

          查看答案和解析>>

          同步練習冊答案