日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】閱讀材料I:

          教材中我們學(xué)習(xí)了:若關(guān)于的一元二次方程的兩根為,根據(jù)這一性質(zhì),我們可以求出己知方程關(guān)于的代數(shù)式的值.

          問題解決:

          1)已知為方程的兩根,則: __ _,__ _,那么_ (請你完成以上的填空)

          閱讀材料:II

          已知,且.求的值.

          :可知

          ,即

          是方程的兩根.

          問題解決:

          2)若 ;

          3)已知.求的值.

          【答案】1-3;-1;11;(2;(3

          【解析】

          1)根據(jù)根與系數(shù)的關(guān)系可求出x1+x2x1x2的值,然后利用完全平方公式將變形為,再代值求解即可;

          2)利用加減法結(jié)合因式分解解方程組,然后求值即可;

          3)根據(jù)材料中的的解法將等式變形,然后將m看作一個(gè)整體,利用一元二次方程根與系數(shù)的關(guān)系,可求出m+m的值,然后再代值求解.

          解:(1)∵為方程的兩根,

          ,

          故答案為:-3-1;11;

          2

          ①×b得:

          ②×a得:

          -④得:

          又∵

          ,即

          故答案為:;

          3)由n2+3n-2=0可知n≠0;

          2m2-3m-1=0,且mn≠1,即m≠;

          m是方程2x2-3x-1=0的兩根,
          m+,m;

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
          (1)求證:四邊形BCDE為菱形;
          (2)連接AC,若AC平分∠BAD,BC=1,求AC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,E為AB邊上一點(diǎn),EC平分∠DEB,F(xiàn)為CE的中點(diǎn),連接AF,BF,過點(diǎn)E作EH∥BC分別交AF,CD于G,H兩點(diǎn).
          (1)求證:DE=DC;
          (2)求證:AF⊥BF;
          (3)當(dāng)AFGF=28時(shí),請直接寫出CE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點(diǎn),且EA=EC.
          (1)求證:四邊形ABCD是菱形;
          (2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線y= x2 x﹣ 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對稱軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.

          (1)求直線AE的解析式;
          (2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
          (3)點(diǎn)G是線段CE的中點(diǎn),將拋物線y= x2 x﹣ 沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對稱軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)A(﹣1,1)、B(4,6)在拋物線y=ax2+bx上
          (1)求拋物線的解析式;
          (2)如圖1,點(diǎn)F的坐標(biāo)為(0,m)(m>2),直線AF交拋物線于另一點(diǎn)G,過點(diǎn)G作x軸的垂線,垂足為H.設(shè)拋物線與x軸的正半軸交于點(diǎn)E,連接FH、AE,求證:FH∥AE;

          (3)如圖2,直線AB分別交x軸、y軸于C、D兩點(diǎn).點(diǎn)P從點(diǎn)C出發(fā),沿射線CD方向勻速運(yùn)動,速度為每秒
          個(gè)單位長度;同時(shí)點(diǎn)Q從原點(diǎn)O出發(fā),沿x軸正方向勻速運(yùn)動,速度為每秒1個(gè)單位長度.點(diǎn)M是直線PQ與拋物線的一個(gè)交點(diǎn),當(dāng)運(yùn)動到t秒時(shí),QM=2PM,直接寫出t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在矩形中,的中點(diǎn),以點(diǎn)為直角頂點(diǎn)的直角三角形的兩邊EF、EG分別過點(diǎn)B、C

          1)求證:

          2)將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到重合時(shí)停止轉(zhuǎn)動,若分別與相交于點(diǎn)(如圖2).若,求面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點(diǎn).
          (1)求出拋物線的解析式;
          (2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;
          (3)點(diǎn)P是線段AB上一動點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時(shí)點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

          (1)這次統(tǒng)計(jì)共抽查了名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為
          (2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
          (3)該校共有1500名學(xué)生,請估計(jì)該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?
          (4)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

          查看答案和解析>>

          同步練習(xí)冊答案