日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四邊形ABCD的對角線AC與BD互相垂直,若AB=3,BC=4,CD=5,則AD的長為( 。
          分析:在Rt△AOB、Rt△DOC中分別表示出AO2、DO2,從而在Rt△ADO中利用勾股定理即可得出AD的長度.
          解答:解:在Rt△AOB中,AO2=AB2-BO2
          Rt△DOC中可得:DO2=DC2-CO2;
          ∴可得AD2=AO2+DO2=AB2-BO2+DC2-CO2=18,
          即可得AD=
          18
          =3
          2

          故選A.
          點評:此題考查了勾股定理的知識,解答本題的關(guān)鍵是在Rt△AOB、Rt△DOC中分別表示出AO2、DO2,需要我們熟練掌握勾股定理的表達(dá)形式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
          (提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
          (1)求證:PA=PC.
          (2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

          (I)求證:AE=EF;
          (Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案