日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是

          【答案】8﹣π
          【解析】解:作DH⊥AE于H, ∵∠AOB=90°,OA=3,OB=2,
          ∴AB= = ,
          由旋轉(zhuǎn)的性質(zhì)可知,OE=OB=2,DE=EF=AB= ,△DHE≌△BOA,
          ∴DH=OB=2,
          陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積﹣扇形DEF的面積
          = ×5×2+ ×2×3+
          =8﹣π,
          所以答案是:8﹣π.

          【考點精析】通過靈活運用勾股定理的概念和扇形面積計算公式,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)即可以解答此題.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)y=x2+x的圖象,如圖所示

          (1)根據(jù)方程的根與函數(shù)圖象之間的關(guān)系,將方程x2+x=1的根在圖上近似地表示出來(描點),并觀察圖象,寫出方程x2+x=1的根(精確到0.1).
          (2)在同一直角坐標系中畫出一次函數(shù)y= x+ 的圖象,觀察圖象寫出自變量x取值在什么范圍時,一次函數(shù)的值小于二次函數(shù)的值.
          (3)如圖,點P是坐標平面上的一點,并在網(wǎng)格的格點上,請選擇一種適當?shù)钠揭品椒,使平移后二次函?shù)圖象的頂點落在P點上,寫出平移后二次函數(shù)圖象的函數(shù)表達式,并判斷點P是否在函數(shù)y= x+ 的圖象上,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).

          (1)求拋物線的表達式;
          (2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
          (3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀下面材料:如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點,觀察圖象可知:①當x=﹣3或1時,y1=y2;②當﹣3<x<0或x>1時,y1>y2;即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
          有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
          艾斯柯同學類比以上知識的研究方法,用函數(shù)與方程的思想對不等式的解法進行了探究,請將他下面的②③④補充完整:
          ①當x=0時,原不等式不成立:當x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;當x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<
          ②構(gòu)造函數(shù),畫出圖象
          設y3=x2+4x﹣1,y4= 在同一坐標系中分別畫出這兩個函數(shù)的圖象.
          雙曲線y4= 如圖2所示,請在此坐標系中直接畫出拋物線y3=x2+4x﹣1(可不列表);

          ③利用圖象,確定交點橫坐標
          觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
          ④借助圖象,寫出解集
          結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一平面直角坐標系內(nèi)的圖象大致為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y= 的圖象交于點P,P在第一象限,PA⊥x軸于點A,PB⊥y軸于點B,一次函數(shù)的圖象分別交x軸、y軸于點C、D,且SPBD=4, =
          (1)求一次函數(shù)與反比例函數(shù)的解析式;
          (2)根據(jù)圖象直接寫出當x>0時,一次函數(shù)的值大于反比例函數(shù)值的x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在長方形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D做勻速運動,那么△ABP的面積S與點P運動的路程x之間的函數(shù)圖象大致為( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面上,Rt△ABC與直徑為CE的半圓O,如圖1擺放,∠B=90°,BC=m,AC=2CE=n,半圓O交BC邊于點D,將半圓O繞點C按逆時針方向旋轉(zhuǎn),點D隨半圓O旋轉(zhuǎn),且∠ECD=∠ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).
          (1)①當α=0°時,連接DE,則∠CDE=°,CD=;②當α=180°時, =
          (2)試判斷:旋轉(zhuǎn)過程中 的大小有無變化?請僅就圖2的情形給出證明.
          (3)若m=4,n=5,當α=∠ACB時,線段BD=
          (4)若m=4 ,n=6,當半圓O旋轉(zhuǎn)至與△ABC的邊相切時,線段BD=

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC是直角邊長為2a的等腰直角三角形,直角邊AB是半圓O1的直徑,半圓O2過C點且與半圓O1相切,則圖中陰影部分的面積是( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習冊答案