日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,拋物線F1:y1=-x2-x+1與拋物線F2:y2=x2-x-1相交于A、B兩點(diǎn),拋物線F1與拋物線F2分別交y軸于點(diǎn)C、點(diǎn)D
          (1)判斷四邊形ACBD的形狀為
           
          ,其面積為
           

          (2)若將“拋物線F1:y1=-x2-x+1與拋物線F2:y2=x2-x-1”分別改為“拋物線F1:y1=-ax2-bx+1與拋物線F2:y2=ax2-bx-1,且(a>0)”,則四邊形ACBD的形狀是否發(fā)生變化?說明理由;
          (3)在(2)的前提下,當(dāng)b滿足怎樣的條件時(shí),四邊形ACBD是菱形.(直接寫出答案)
          分析:(1)(2)題的思路是一致的;根據(jù)拋物線F1、F2的解析式,可確定C(0,1)、D(0,-1);聯(lián)立兩個(gè)拋物線的解析式,可求得A(-
          a
          a
          ,-
          b
          a
          ),B(
          a
          a
          ,
          b
          a
          ),由此可發(fā)現(xiàn)C、D以及A、B都關(guān)于原點(diǎn)O對(duì)稱,那么AB、CD互相平分,所有四邊形ACBD是平行四邊形;那么它的面積可由CD與A、B橫坐標(biāo)差的絕對(duì)值的積的一半求得;根據(jù)這些結(jié)論即可得到(1)題的填空答案.
          (3)若四邊形ACBD是菱形,那么AB、CD互相垂直平分,此時(shí)A、B都在x軸上,且關(guān)于原點(diǎn)對(duì)稱,所以A、B的縱坐標(biāo)值為0,由此可求得a的值,進(jìn)而可得到A、B的坐標(biāo),代入拋物線的解析式中,即可確定b的值.
          解答:解:(1)四邊形ACBD是平行四邊形,面積為2.(證明過程同(2).)

          (2)四邊形ACBD的形狀不變,仍為平行四邊形,理由如下:
          聯(lián)立F1、F2的解析式,可得:
          y=-ax2-bx+1
          y=ax2-bx-1
          ,
          解得
          x=
          a
          a
          y=-
          b
          a
          x=-
          a
          a
          y=
          b
          a
          ;
          故A(-
          a
          a
          ,
          b
          a
          ),B(
          a
          a
          ,-
          b
          a
          );
          易知C(0,1),D(0,-1);
          則A、B,C、D都關(guān)于原點(diǎn)對(duì)稱,
          即AB、CD互相平分,
          因此四邊形ACBD是平行四邊形;
          S?ACBD=
          1
          2
          CD×|xB-xA|=
          1
          2
          ×2×
          2
          a
          a
          =
          2
          a
          a


          (3)若平行四邊形ACBD是菱形,則AB、CD互相垂直平分,那么A、B必在x軸上,則:
          -
          b
          a
          =
          b
          a
          =0,
          即b=0;
          故當(dāng)b=0時(shí),四邊形ACBD是菱形.
          點(diǎn)評(píng):此題考查了二次函數(shù)的性質(zhì)、函數(shù)圖象交點(diǎn)坐標(biāo)的求法、平行四邊形的判定以及面積的求法、菱形的判定等知識(shí),熟練掌握各特殊四邊形的判定方法是解答此題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          定義一種變換:平移拋物線F1得到拋物線F2,使F2經(jīng)過F1的頂點(diǎn)A.設(shè)F2的對(duì)稱軸分別交F1、F2于點(diǎn)D、B,點(diǎn)C是點(diǎn)A關(guān)于直線BD的對(duì)稱點(diǎn).
          精英家教網(wǎng)
          (Ⅰ)如圖①,若F1:y=x2經(jīng)過變換得到F2:y=x2+bx,點(diǎn)C坐標(biāo)為(2,0),求拋物線F2的解析式;
          (Ⅱ)如圖②,若F1:y=ax2+c經(jīng)過變換后點(diǎn)B的坐標(biāo)為(2,c-1),求△ABD的面積;
          (Ⅲ)如圖③,若F1y=
          1
          3
          x2-
          2
          3
          x+
          7
          3
          經(jīng)過變換滿足AC=2
          3
          ,點(diǎn)P是直線AC上的動(dòng)點(diǎn),求點(diǎn)P到點(diǎn)D的距離與到直線AD的距離之和的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,拋物線F1:y1=-x2-x+1與拋物線F2:y2=x2-x-1相交于A、B兩點(diǎn),拋物線F1與拋物線F2分別交y軸于點(diǎn)C、點(diǎn)D
          (1)判斷四邊形ACBD的形狀為______,其面積為______;
          (2)若將“拋物線F1:y1=-x2-x+1與拋物線F2:y2=x2-x-1”分別改為“拋物線F1:y1=-ax2-bx+1與拋物線F2:y2=ax2-bx-1,且(a>0)”,則四邊形ACBD的形狀是否發(fā)生變化?說明理由;
          (3)在(2)的前提下,當(dāng)b滿足怎樣的條件時(shí),四邊形ACBD是菱形.(直接寫出答案)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年天津市河?xùn)|區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          定義一種變換:平移拋物線F1得到拋物線F2,使F2經(jīng)過F1的頂點(diǎn)A.設(shè)F2的對(duì)稱軸分別交F1、F2于點(diǎn)D、B,點(diǎn)C是點(diǎn)A關(guān)于直線BD的對(duì)稱點(diǎn).

          (Ⅰ)如圖①,若F1:y=x2經(jīng)過變換得到F2:y=x2+bx,點(diǎn)C坐標(biāo)為(2,0),求拋物線F2的解析式;
          (Ⅱ)如圖②,若F1:y=ax2+c經(jīng)過變換后點(diǎn)B的坐標(biāo)為(2,c-1),求△ABD的面積;
          (Ⅲ)如圖③,若F1經(jīng)過變換滿足AC=2,點(diǎn)P是直線AC上的動(dòng)點(diǎn),求點(diǎn)P到點(diǎn)D的距離與到直線AD的距離之和的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)模擬卷(11)(解析版) 題型:解答題

          如圖,拋物線F1:y1=-x2-x+1與拋物線F2:y2=x2-x-1相交于A、B兩點(diǎn),拋物線F1與拋物線F2分別交y軸于點(diǎn)C、點(diǎn)D
          (1)判斷四邊形ACBD的形狀為______,其面積為______;
          (2)若將“拋物線F1:y1=-x2-x+1與拋物線F2:y2=x2-x-1”分別改為“拋物線F1:y1=-ax2-bx+1與拋物線F2:y2=ax2-bx-1,且(a>0)”,則四邊形ACBD的形狀是否發(fā)生變化?說明理由;
          (3)在(2)的前提下,當(dāng)b滿足怎樣的條件時(shí),四邊形ACBD是菱形.(直接寫出答案)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案