日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知矩形ABCD中,AB4,動點P從點A出發(fā),沿AD方向以每秒1個單位的速度運動,連接BP,作點A關(guān)于直線BP的對稱點E,設(shè)點P的運動時間為ts).

          1)若AD6,P僅在邊AD運動,求當(dāng)P,E,C三點在同一直線上時對應(yīng)的t的值.

          2)在動點P在射線AD上運動的過程中,求使點E到直線BC的距離等于3時對應(yīng)的t的值.

          【答案】1t=(62s時,PE、C共線;(24

          【解析】

          1)設(shè)APt,則PD6t,由點A、E關(guān)于直線BP對稱,得出∠APB=∠BPE,由平行線的性質(zhì)得出∠APB=∠PBC,得出∠BPC=∠PBC,在RtCDP中,由勾股定理得出方程,解方程即可得出結(jié)果;

          2)①當(dāng)點EBC的上方,點EBC的距離為3,作EMBCM,延長MEADN,連接PE、BE,則EM3,EN1,BEAB4,四邊形ABMN是矩形,ANBM,證出BME∽△ENP,得出,求出NP,即可得出結(jié)果;

          ②當(dāng)點EBC的下方,點EBC的距離為3,作EHAB的延長線于H,則BH3,BEAB4AHAB+BH7,HE,證得AHE∽△PAB,得出,即可得出結(jié)果.

          解:(1)設(shè)APt,則PD6t,如圖1所示:

          ∵點A、E關(guān)于直線BP對稱,

          ∴∠APB=∠BPE,

          ADBC,

          ∴∠APB=∠PBC,

          PE、C共線,

          ∴∠BPC=∠PBC,

          CPBCAD6,

          RtCDP中,CD2+DP2PC2,

          即:42+6t262,

          解得:t66+(不合題意舍去),

          t=(6s時,P、EC共線;

          2)①當(dāng)點EBC的上方,點EBC的距離為3,作EMBCM,延長MEADN,連接PEBE,如圖2所示:

          EM3EN1,BEAB4,四邊形ABMN是矩形,

          RtEBM中,ANBM,

          ∵點AE關(guān)于直線BP對稱,

          ∴∠PEB=∠PAB90°,

          ∵∠ENP=∠EMB=∠PEB90°,

          ∴∠PEN=∠EBM,

          ∴△BME∽△ENP

          ,即

          NP,

          tAPANNP;

          ②當(dāng)點EBC的下方,點EBC的距離為3,作EHAB的延長線于H,如圖3所示:

          BH3BEAB4,AHAB+BH7

          RtBHE中,HE,

          ∵∠PAB=∠BHE90°,AEBP,

          ∴∠APB+EAP=∠HAE+EAP90°

          ∴∠HAE=∠APB

          ∴△AHE∽△PAB,

          ,即,

          解得:tAP,

          綜上所述,t

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.

          (1)求證:AGE≌△BGF;

          (2)試判斷四邊形AFBE的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】廬陽春風(fēng)體育運動品商店從廠家購進甲,乙兩種T恤共400件,其每件的售價與進貨量(件)之間的關(guān)系及成本如下表所示:

          T

          每件的售價/

          每件的成本/

          50

          60

          1)當(dāng)甲種T恤進貨250件時,求兩種T恤全部售完的利潤是多少元;

          2)若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進貨量(件)之間的函數(shù)關(guān)系式;

          3)在(2)的條件下,已知兩種T恤進貨量都不低于100件,且所進的T恤全部售完,該商店如何安排進貨才能使獲得的利潤最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線y=﹣x+2交坐標(biāo)軸于A、B兩點,直線ACABx軸于點C,拋物線恰好過點A、BC

          1)求拋物線的表達式;

          2)當(dāng)點M在線段AB上方的曲線上移動時,求四邊形AOBM的面積的最大值;

          3)點E在拋物線的對稱軸上,點F在拋物線上,是否存在點F使得以A、CE、F為頂點的四邊形是平行四邊形?若存在求出點F坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,直線ABykx+bk0,b0),與x軸交于點A、與y軸交于點B,直線CDx軸交于點C、與y軸交于點D.若直線CD的解析式為y=﹣x+b),則稱直線CD為直線AB姊線,經(jīng)過點A、B、C的拋物線稱為直線AB母線

          1)若直線AB的解析式為:y=﹣3x+6,求AB姊線CD的解析式為:   (直接填空);

          2)若直線AB母線解析式為:,求AB姊線CD的解析式;

          3)如圖2,在(2)的條件下,點P為第二象限母線上的動點,連接OP,交姊線CD于點Q,設(shè)點P的橫坐標(biāo)為m,PQOQ的比值為y,求ym的函數(shù)關(guān)系式,并求y的最大值;

          4)如圖3,若AB的解析式為:ymx+3m0),AB姊線CD,點GAB的中點,點HCD的中點,連接OH,若GH,請直接寫出AB母線的函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明騎自行車去上學(xué)途中,經(jīng)過先上坡后下坡的一段路,在這段路上所騎行的路程(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①小明上學(xué)途中下坡路的長為1800米;②小明上學(xué)途中上坡速度為150米/分,下坡速度為200米/分;③如果小明放學(xué)后按原路返回,且往返過程中,上、下坡的速度都相同,則小明返回時經(jīng)過這段路比上學(xué)時多用1分鐘;④如果小明放學(xué)后按原路返回,返回所用時間與上學(xué)所用時間相等,且返回時下坡速度是上坡速度的1.5倍,則返回時上坡速度是160米/分其中正確的有( )

          A.①④B.②③C.②③④D.②④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,以為直徑的⊙分別交于點,交的延長線于點,過點,垂足為點,連接,交于點.

          1)求證:是⊙的切線;

          2)若⊙的半徑為4,①當(dāng)時,求的長(結(jié)果保留π);②當(dāng)時,求線段的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平行四邊形ABCD中,BECD,BFAD,垂足分別為E、F,CE2DF1,∠EBF60°,則這個平行四邊形ABCD的面積是(  )

          A. 2B. 2

          C. 3D. 12

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形硬紙片ABCD的頂點A軸的正半軸及原點上滑動,頂點B軸的正半軸及原點上滑動,點EAB的中點,AB=24,BC=5,給出下列結(jié)論:①點A從點O出發(fā),到點B運動至點O為止,點E經(jīng)過的路徑長為12π;②OAB的面積的最大值為144;③當(dāng)OD最大時,點D的坐標(biāo)為,其中正確的結(jié)論是_________(填寫序號).

          查看答案和解析>>

          同步練習(xí)冊答案