日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2-x+c(a≠0)經(jīng)過(guò)A,B,C三點(diǎn).
          (1)求過(guò)A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
          (2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最小?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          【答案】分析:(1)拋物線解析式中有兩個(gè)待定系數(shù)a,c,根據(jù)直線AC解析式求點(diǎn)A、C坐標(biāo),代入拋物線解析式即可;
          (2)分析不難發(fā)現(xiàn),△ABP的直角頂點(diǎn)只可能是P,根據(jù)已知條件可證AC2+BC2=AB2,故點(diǎn)C滿足題意,根據(jù)拋物線的對(duì)稱性,點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)也符合題意;
          (3)由于B,F(xiàn)是定點(diǎn),BF的長(zhǎng)一定,實(shí)際上就是求BM+FM最小,找出點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)B',連接B'F,交AC于點(diǎn)M,點(diǎn)M即為所求,由(2)可知,BC⊥AC,延長(zhǎng)BC到B',使BC=B'C,利用中位線的性質(zhì)可得B'的坐標(biāo),從而可求直線B'F的解析式,再與直線AC的解析式聯(lián)立,可求M點(diǎn)坐標(biāo).
          解答:解:(1)∵直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C
          ∴點(diǎn)A(-1,0),C(0,-
          ∵點(diǎn)A,C都在拋物線上,


          ∴拋物線的解析式為y=x2-x-
          ∴頂點(diǎn)F(1,-).

          (2)存在:
          p1(0,-),p2(2,-).

          (3)存在
          理由:
          解法一:
          延長(zhǎng)BC到點(diǎn)B′,使B′C=BC,連接B′F交直線AC于點(diǎn)M,則點(diǎn)M就是所求的點(diǎn),
          ∵過(guò)點(diǎn)B′作B′H⊥AB于點(diǎn)H,
          ∵B點(diǎn)在拋物線y=x2-x-上,
          ∴B(3,0),
          在Rt△BOC中,tan∠OBC=
          ∴∠OBC=30°,BC=2
          在Rt△B′BH中,B′H=BB′=2
          BH=B′H=6,∴OH=3,
          ∴B′(-3,-2).
          設(shè)直線B′F的解析式為y=kx+b,
          ,
          解得
          ∴y=
          ,
          解得
          ∴M(
          ∴在直線AC上存在點(diǎn)M,使得△MBF的周長(zhǎng)最小,此時(shí)M().
          解法二:
          過(guò)點(diǎn)F作AC的垂線交y軸于點(diǎn)H,則點(diǎn)H為點(diǎn)F關(guān)于直線AC的對(duì)稱點(diǎn),連接BH交AC于點(diǎn)M,則點(diǎn)M
          即為所求.
          過(guò)點(diǎn)F作FG⊥y軸于點(diǎn)G,則OB∥FG,BC∥FH,
          ∴∠BOC=∠FGH=90°,∠BCO=∠FHG
          ∴∠HFG=∠CBO
          同方法一可求得B(3,0)
          在Rt△BOC中,tan∠OBC=
          ∴∠OBC=30°,可求得GH=GC=
          ∴GF為線段CH的垂直平分線,可證得△CFH為等邊三角形
          ∴AC垂直平分FH
          即點(diǎn)H為點(diǎn)F關(guān)于AC對(duì)稱點(diǎn),
          ∴H(0,-
          設(shè)直線BH的解析式為y=kx+b,由題意得,,
          解得,
          ∴y=,
          ,
          解得
          ∴M(),
          ∴在直線AC上存在點(diǎn)M,使得△MBF的周長(zhǎng)最小,此時(shí)M().
          點(diǎn)評(píng):考查代數(shù)幾何的綜合運(yùn)用能力,體現(xiàn)數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系和不可分割的特點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:填空題

          (2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點(diǎn),圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向左移動(dòng),當(dāng)⊙P與該直線相交時(shí),橫坐標(biāo)為整數(shù)的點(diǎn)P有    個(gè).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

          (2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2-x+c(a≠0)經(jīng)過(guò)A,B,C三點(diǎn).
          (1)求過(guò)A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
          (2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:填空題

          (2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點(diǎn),圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向左移動(dòng),當(dāng)⊙P與該直線相交時(shí),橫坐標(biāo)為整數(shù)的點(diǎn)P有    個(gè).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年福建省莆田市中考數(shù)學(xué)仿真模擬試卷(三)(解析版) 題型:解答題

          (2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2-x+c(a≠0)經(jīng)過(guò)A,B,C三點(diǎn).
          (1)求過(guò)A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
          (2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2008年遼寧省十二市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2-x+c(a≠0)經(jīng)過(guò)A,B,C三點(diǎn).
          (1)求過(guò)A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
          (2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案